• Title/Summary/Keyword: Binderless WC

Search Result 7, Processing Time 0.022 seconds

Spark Plasma Sintering Behavior of Binderless WC Powders

  • Kim, Hwan-Tae;Park, Dong-Wook;Kim, Ji-Soon;Kwon, Young-Soon;Kwon, Hye-Suk;Baek, Eung-Ryul
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2003
  • Pure WC powders which does not include a binder phase were consolidated by spark plasma sintering (SPS) process at 1600~185$0^{\circ}C$ for 0~30 min under 50 MPa. Microstructure alid mechanical properties of binderless WC prepared by SPS were investigated. With increasing sintering temperature, sintered density and Vickers hardness of binderless WC increased. The fracture toughness of binderless WC was 7~15 MPa $m^{1/2}$ depending on the sintered density and decreased with increasing the Vickers hardness. It is found that the binderless WC prepared by SPS at 175$0^{\circ}C$ for 10 min under 50 MPa showed nearly full densification with fine-grained structure and revealed excellent mechanical properties of high hardness (~HV 2400) and considerably high fracture toughness (~7 MPa $m^{1/2}$).

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering (진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조)

  • Min, Byoung-June;Park, Young-Ho;Lee, Gil-Geun;Ha, Gook-Hyeon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

Oxidation Behavior of WC-TiC-TaC Binderless Cemented Carbide under Low Partial Pressure of Oxygen

  • Uchiyama, Yasuo;Ueno, Shuji;Sano, Hideaki;Tanaka, Hiroki;Nakahara, Kenji;Sakaguchi, Shigeya;Nakano, Osamu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.355-356
    • /
    • 2006
  • WC-TiC-TaC binderless cemented carbide was oxidized under low partial pressure of oxygen (50ppm) at 873K for 1 to 20 h. Surface roughness was measured using atomic force microscope, and effect of TiC amount on oxidation behavior of the carbide was investigated. WC phase was oxidized more easily than WC-TiC-TaC solid solution phase. With an increase in TiC amount, WC-TiC-TaC phase increased and the oxidation resistance of the carbide increased.

  • PDF

Mechanical Property Evaluation of WC-Co-B4C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-B4C 소재의 기계적 특성평가)

  • Lee, Jeong-Han;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.397-402
    • /
    • 2021
  • In this study, binderless-WC, WC-6 wt%Co, WC-6wt% 1 and 2.5 B4C materials are fabricated by spark plasma sintering process (SPS process). Each fabricated WC material is almost completely dense, with a relative density up to 99.5 % after the simultaneous application of pressure of 60 MPa. The WC added Co and Co-B4C materials resulted in crystalline growth. The WC with HCP crystal structure has respective interfacial energy (basal facet direction: 1.07 ~ 1.34 J·m-2, prismatic direction: 1.43 ~ 3.02 J·m-2) that depends on the grain growth direction. It is confirmed that the continuous grain growth, biased by the basal facet, which has relatively low energy, is promoted at the WC/Co interface. As abnormal grain growth takes place, the grain size increases more than twice from 0.37 to 0.8 um. It is found through analysis that the hardness property also greatly decreases from about 2661.4 to 1721.4 kg/mm2, along with the grain growth.