• 제목/요약/키워드: Binder process

검색결과 503건 처리시간 0.029초

헤테르접합을 이용한 누설전류 저감을 위한 다층구조의 방사선 검출 물질 개발 (Radiation detector material development with multi-layer by hetero-junction for the reduction of leakage current)

  • 오경민;윤민석;김민우;조성호;남상희;박지군
    • 한국방사선학회논문지
    • /
    • 제3권1호
    • /
    • pp.11-15
    • /
    • 2009
  • 본 연구에서는 헤테로 접합을 이용하여 누설전류를 저감 시키는 기술을 적용하여 Particle-In -Binder을 이용한 방사선 영상 센서의 변환 물질을 개발하였다. 이는 디지털 방사선 영상 검출기의 두 가지 방식 중 하나인 직접방식에 사용되는 핵심 소자로 기존의 비정질 셀레늄(Amorphous Selenium)을 대체하여 더욱 효율이 높은 후보 물질들이 연구되어지는 가운데 태양전지와 반도체 분야에서 이미 많이 사용되어온 이종접합(Hetero junction)을 이용해 누설 전류를 저감 시키는데 그 목적이 있다. 본 연구에서 사용되는 Particle-In -Binder 제작 방법은 검출 물질 제작이 용이하고 높은 수율과 대면적의 검출기 제작에 적합하나 높은 누설 전류가 의료 영상 시스템에 있어서 문제가 되어 오고 있다. 이러한 단점을 보완하기 위해 다층 구조를 이용하여 누설 전류를 저감시킨다면 Particle-In -Binder을 이용하여 간편하게 향상된 효율의 디지털 방사선 검출기를 제작 할 수 있다고 사료 되어 진다. 본 연구에서는 누설전류 및 민감도, 그리고 선형성에 대한 전기적 신호를 측정하여 제작된 다층 구조의 방사선 검출 물질의 특성 평가가 이루어 졌다.

  • PDF

산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(II) (플라이 애쉬와 아토마이징 제강 환원슬래그 사용) (Characteristics of Polyester Polymer Concrete Using Spherical Aggregates from Industrial By-Products(II)(Use of Fly Ash and Atomizing Reduction Steel Slag))

  • 황의환;김진만
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.364-371
    • /
    • 2015
  • 폴리머 콘크리트의 원가절감을 위해서 생산비의 대부분을 차지하는 폴리머 결합재의 사용량을 절감하는 것이 매우 중요하다. 산업부산물로 얻을 수 있는 플라이 애쉬와 아토마이징 제강 환원슬래그는 구형의 재료이다. 구형의 제강환원슬래그는 래들로 환원공정에서 생산되는 제강슬래그를 아토마이징 기술로 제조하였다. 폴리머 콘크리트 복합재료의 제 물성을 조사하기 위하여 폴리머 결합재의 첨가율과 아토마이징 제강 환원슬래그의 대체율에 따라 다양한 배합의 폴리머 콘크리트 공시체를 제조하고 물성시험을 실시하였다. 시험결과, 아토마이징 제강 환원슬래그의 대체율과 폴리머 결합재의 첨가량이 증가됨에 따라 공시체의 압축 및 휨강도는 현저하게 향상되었다. 내열수성시험에서 압축강도, 휨강도, 밀도 및 세공의 평균직경은 감소되었으나 총세공량과 공극률은 증가되었다. 탄산칼슘(충전재)과 강모래(잔골재)대신 구형의 플라이 애쉬와 아토마이징 제강 환원슬래그를 사용하여 만든 폴리머 콘크리트의 작업성이 현저히 개선되어 본 연구에서 개발된 폴리머 콘크리트는 종래의 제품보다 폴리머 결합재의 사용량을 18.2% 절감할 수 있게 되었다.

중질유 고도정제 부산물의 도로포장용 역청재료로서의 적용성 평가 (Evaluation of Applicability of Heavy Oil Upgrading By-Product (Pitch) as A Pavement Paving Material)

  • 양성린
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.9-18
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the applicability of the pitch, which is produced during SDA petroleum upgrading process, as a pavement paving material. In order for the purpose, the physical and chemical properties of the pitch are analyzed, and then the various plasticizers are applied in the pitch. METHODS : Two types of pitch are selected from oil refinery companies, which are owned the SDA petroleum upgrading process. Also, two types of asphalt binders, PG 64-22 and PG 58-22, are employed to compare with the pitch because these two types of asphalt binders are currently used as paving materials. For the chemical property of the pitch, the composition of SARA (Saturate, Aromatic, Resin, Asphaltene), the elementary composition, and the functional group are analyzed. For the physical property of the pitch, the basic material property tests, such as penetration test, softening point test, flash point test, ductility test, and rotational viscometer test, are performed. Also, the DSR (Dynamic Shear Rheometer) test and the BBR (Bending Beam Rheometer) test are conducted using asphalt binder specimens obtained by both short term aging (Rolling Thin Film Oven, RTFO) and long term aging (Pressure Aging Vessel, PAV) processes. The rheological property of each pitch type is evaluated as a function of temperatures and loading cycles. PG 64-22 asphalt binder is used as a control material. RESULTS AND CONCLUSIONS : The Pitch may not be suitable for the pavement paving material without modifications, but the pitch can be used as alternatives of modified addictive or asphalt. If low molecular component, such as saturate and aromatic components, are added in the pitch based on the development of various plasticizers, it has a strong possibility for the pitch to be used as a alternative. However, in order to verify the performance property of the pitch, further research is needed.

금속분말사출성형법으로 제조된 WC-10Co계 초경합금 소결체의 탄소첨가량에 따른 특성변화 (The Characteristic Changes of Sintered WC-10Co Fabricated by PIM Method with Different Carbon Content)

  • 강상대;박동욱;권영삼;조권구;안인섭
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.262-268
    • /
    • 2011
  • In order to investigate the microstructure and mechanical properties of WC-10 wt% Co insert tool alloy fabricated by PIM (Powder Injection Molding) process, the feedstock of WC-10 wt% and wax used as a kind of binder were mixed together by two blade mixer. After injection molding, the debinding process was carried out by two-steps. First, solvent extraction, in which the binder was eliminated by putting the specimen into normal hexane for 24 hrs at $60^{\circ}C$, and subsequently thermal debinding which was conducted at $260^{\circ}C$ and $480^{\circ}C$ for 6 hrs in the mixed gas of $H_2/N_2$, respectively. Meantime, in order to compensate the decarburization due to hydrogen, 1.2~1.8% of carbon was added to ensure the integrity of the phase. Finally, the specimens were sintered in vacuum under different temperatures, and the relative density of 99.8% and hardness of 2100 Hv can be achieved when sintered at $1380^{\circ}C$, even the TRS is lower than the conventional sintering process.

Preparation and Performance of Aluminosilicate Fibrous Porous Ceramics Via Vacuum Suction Filtration

  • Qingqing Wang;Shaofeng Zhu;Zhenfan Chen;Tong Zhang
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.12-20
    • /
    • 2024
  • This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 ℃, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 ℃ to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 ℃, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.

Microstructure Control of HAp Based Artificial Bone Using Multi-extrusion Process

  • Jang, Dong-Woo;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Porous hydroxyapatite has been widely used as clinical implanted material. However, it has poor mechanical properties. To increase the strength as well as the biocompatibility of the porous HAp based artificial bone, it was fabricated by multi-extrusion process. Hydroxyapatite and graphite powders were mixed separately with ethylene vinely acetate and steric acid by shear mixing process. Hydroxyapatite composites containing porous microstructure were fabricated by arranging it in the die and subject it to extrusion process. Burn-out and sintering processes were performed to remove the binder and graphite as well as increase the density. The external and internal diameter of cylindrical hollow core were approximately 10.4 mm and 4.2 mm, respectively. The size of pore channel designed to increase bone growth (osteconduction) was around 150 ${\mu}m$ in diameter. X-ray diffraction analysis and SEM observation were performed to identity the crystal structure and the detailed microstructure, respectively.

  • PDF

난성형부품의 성형공정개발을 위한 디지털트라이아웃 (Digital Tryout Technique for the Conventional Stamping Process of Hard-to-Form Parts)

  • 심현보
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.93-100
    • /
    • 2013
  • A tryout is a series of process optimization for robust stamping before transfer to the press shop. During tryout, the drawbead control, blank shape determination, binder surface modification, etc., are carried out mainly by a trial-and-error approach. As the level of difficulty of the stamping process increases, the formability becomes more sensitive to the contour of deformed shape, i.e. the blank shape. A digital tryout technique, which simulates a real tryout process, is proposed in this study for challenging stamping processes. Since digital tryout is carried out on a desktop, not in a press shop, a precise control of the deformed contour can be achieved if an optimal blank design technique is utilized. In this work, the proposed digital tryout technique is validated by successful applications to different automotive parts.

압축성형공정에 대한 알루미나 성형체 밀도분포의 FE 분석 (FE Analysis of Alumina Green Body Density for Pressure Compaction Process)

  • 임종인;육영진
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.859-864
    • /
    • 2006
  • For the pressure compaction process of the ceramic powder, the green density is very different with both the ceramic body shape and the processing conditions. The density difference cause non-uniform shrinkages and deformations, and make cracks in the sintered ceramics. In this paper, Material properties of the alumina powder mixed with binder and the friction coefficient between the powder and the tool set were determined through the simple compaction experiments: Also the powder flow characteristics were simulated and the green density was analyzed during the powder compaction process with Finite Element Method (FEM). The results show that the density distributions of the green body were improved at the optimized processing condition and both the possibility of the farming crack generation and rho deformation of the sintered Alumina body were reduced.

결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구 (A Study on the Application of Chemical Grouting Method for Aging Reservoir Reinforce According to the Change of Binder and Using Water)

  • 송상훤;서세관
    • 한국농촌건축학회논문집
    • /
    • 제21권4호
    • /
    • pp.45-52
    • /
    • 2019
  • Chemical grouting method is mainly used for construction of dams and reservoirs, stabilization and reinforcement of slopes, reinforcement of soft grounds such as embankments, dredging and landfills, the order of earthquake response method, and the reinforcement of structures. Recently, it is widely applied in construction sites such as highways, airfields, high-speed railways, subsea facilities, port construction works, tunnels, and subway works. As such, the demand for grouting continues to increase. The development of the grouting method was focused on increasing the strength of the ground, and the development of the chemical additives, the injection device, and the stirring device were mainly performed. But ordinary portland cement used for grouting is a product that consumes natural resources such as limestone, generates a large amount of greenhouse gases, consumes a large amount of energy sources, and it is time to develop products and new methods to replace them. In this study, Ordinary Portland Cement and New Grouting Binder (circulating fluidized bed boiler fly and blast furnace slag) were compared and analyzed by the following test. Homo-gel strength and homo-gel time, water quality analysis of the water used and soil contamination process tests of homo-gel samples were performed. In the case of NGB, when Using water is used as the reservoir water, the strength measured smaller than that of the other water. However, it shows about 2.5 times greater than the homo-gel compressive strength applied to OPC (7-day, reservoir water), so there is no problem with water quality when applied.

SDAR을 이용한 아스팔트 혼합물의 적용성 평가 (Application Evaluation of Asphalt mixtures using SDAR (Solvent DeAsphaltene Residue))

  • 양성린;임정혁;황성도;백철민
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.53-61
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the SDAR (solvent deasphaltene residue), which is obtained from the solvent deasphalting (SDA) process, as a pavement material. METHODS : The physical properties of the SDAR were evaluated based on its chemical composition, and asphalt mixtures with the SDAR were fabricated and used for the evaluation of mechanical properties. Firstly, the chemical composition of SARA (saturate, aromatic, resin and asphaltene) was analyzed using the TLC-FID (thin-layer chromatography-flame ionization detector). Moreover, the basic material properties of the asphalt binder with the SDAR were evaluated by the penetration test, softening point test, ductility test, and PG (performance grade) grade test. The rheological properties of the asphalt binder with the SDAR were evaluated by the dynamic shear modulus ($G^*$) obtained using the time-temperature superposition (TTS) principle. Secondly, the mechanical properties of the asphalt mixtures with the SDAR were evaluated. The compactibility was evaluated using the gyratory compacter. Moreover, the tensile strength ratio (TSR) was used for evaluating the moisture susceptibility of the asphalt mixtures (i.e., susceptibility to pothole damage). The dynamic modulus $E^*$, which is a fundamental property of the asphalt mixture, obtained at different temperatures and loading cycles, was used to evaluate the mechanical properties of the asphalt mixtures. RESULTS AND CONCLUSION : The SDAR shows stiffer and more brittle behavior than the conventional asphalt binder. As the application of the SDAR directly in the field may cause early failures, such as cracks on pavements, it should be applied with modifiers that can favorably modify the brittleness property of the SDAR. Therefore, if appropriate additives are applied on the SDAR, it can be used as a pavement material because of its low cost and strong resistance to rutting.