• Title/Summary/Keyword: Binder content

Search Result 536, Processing Time 0.027 seconds

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

A Study of the Properties of Shrinkage in High Performance Concrete according to W/B and Water Content (W/B 및 단위수량 변화에 따른 고성능 콘크리트의 수축특성에 관한 연구)

  • 고경택;문학용;신동안;박정준;김성욱;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.257-260
    • /
    • 2003
  • This study discusses the properties of shrinkage of high performance concrete with W/B and water content. According to results, drying shrinkage decrease of water content due to the influence of autogenous shrinkage. And drying shrinkage is reduced with a decrease of water content. As W/B decreases, autogenous shrinkage increases because shrinkage by hydration is generated greatly due to an increase of binder content. Also, as water content decreases, it is reduced because of a decrease of cement paste by cement content.

  • PDF

Characteristics of Soil Pavement by Red Mud Content and Binder Type (레드머드 대체율에 따른 결합재별 흙포장재의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Jae-Hwan;Kim, Byeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. The development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, water absorption and efflorescence of alkali-activated slag-red mud soil pavement according to binder type. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the redmud content increased.

Evaluation of Mechanical Characteristics of Castor Oil Based Bio-Polymer Concretes for Ultra Thin Overlays (피마자유를 이용한 초박층 덧씌우기용 바이오 폴리머 콘크리트의 역학적 특성 평가)

  • Park, Hee Mun;Choi, Ji Young;Kim, Tae Woo;Ahn, Young Jun;Le, Van Phuc
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

Effect of the Addition of Binders on the Fuel Characteristics of Wood Pellets (바인더의 첨가가 목재 펠릿의 연료적 특성에 미치는 영향)

  • Ahn, Byoung Jun;Chang, Hee-Sun;Cho, Seong Taek;Han, Gyu-Seong;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.475-489
    • /
    • 2013
  • This work was conducted to investigate the effect of the addition of binders, such as rapeseed flour, coffee waste, bark, pine cone and lignin powder, on the fuel characteristics of the pellets fabricated with larch and tulip tree sawdust. Moisture content, bulk density and higher heating value of most pellets fabricated with the binders exceeded the 1st-grade pellet standard designated by Korea Forest Research Institute, but ash content of the pellets fabricated with rapeseed flour or bark of 10 wt% on the dry weight basis of sawdust was satisfied with just the 2nd- or 3rd-grade standard. The durability of tulip tree-pellets was positively influenced by the addition of rapeseed flour, coffee waste or lignin powder and increased with increasing the amount of the binders. For larch-pellets, the increase of binders did not greatly affect the durability, and even the durability reduced with the increase of bark or pine cone. From the microscopic observation, the obvious feature of pellet surfaces was not identified by the type of binder but by the addition amount of the binder. In summary, the addition of binders contributed to the fuel characteristics of wood pellets, and particularly the characteristics of wood pellets fabricated with coffee waste improved greatly. Therefore, if the binders are secured sufficiently with a reasonable cost, it might be possible to commercialize wood/binder pellets, which have better fuel characteristics than conventional wood pellets.

Factors on the Physical Properties of Dry Ready Mixed Cement Mortar for Finishing (마감용 건조모르타르의 물성에 미치는 각 요인의 영향)

  • 정재동;김원기;이영진;송용순;황재현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.138-143
    • /
    • 1993
  • The objective of this report is to investigate the effect of factors like the fineness modulus of sand , content of fly ash and slaked lime, binder/sand ratio, admixture dosage on the physical properties of mortar for finishing. The analysis was performed with design of experiment and air content, water retention and compressive strength were measured.

  • PDF

Properties of Water- Permeable Concrete Using Recycled Aggregate (재생골재를 이용한 투수콘크리트의 특성)

  • Boek, Sung-Hyun;Lim, Heon-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.437-440
    • /
    • 2005
  • The effects of polymer-cement ratio and recycled aggregate content on the continuous void ratio, coefficient of permeablity, compressvie, tensile and flexural strengths of water-permeable polymer-modified concretes using recycled aggregate are examined. As a result, the continuous void ratio and coefficient of permeablity of the water-permeable polymer-modified concretes tend to decrease with increasing polymer-binder ratio. Regardless of the recycled aggregate content, the compressvie, tensile and flexural strengths of the water-permeable polymer-modified concretes wtend to increase with increasing polymer-cement ratio.

  • PDF