• Title/Summary/Keyword: Binary toxin

Search Result 8, Processing Time 0.023 seconds

Molecular Characterization of a Novel Vegetative Insecticidal Protein from Bacillus thuringiensis Effective Against Sap-Sucking Insect Pest

  • Sattar, Sampurna;Maiti, Mrinal K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.937-946
    • /
    • 2011
  • Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on $LC_{50}$ values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB

  • Boonyos, Patcharaporn;Soonsanga, Sumarin;Boonserm, Panadda;Promdonkoy, Boonhiang
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Binary toxin consisting of BinA and BinB from Bacillus sphaericus is toxic to mosquito larvae. BinB is responsible for specific binding to the larval gut cell membrane while BinA is crucial for toxicity. To investigate functional role of cysteine in BinB, three cysteine residues at positions 67, 161, and 241 were replaced by alanine or serine. Mutations at these positions did not affect protein production and overall structure of BinB. These cysteine residues are not involved in disulfide bond formation between BinB molecules. Mosquito-larvicidal assays revealed that C67 and C161 are essential for toxicity, whereas C241 is not. Mutations at C67 and C161 resulted in weaker BinA-BinB interaction. The loss of toxicity may be due to the reduction of interactions between BinA and BinB or BinB and its receptor. C67 and C161 could also play a part during conformational changes or internalization of the binary toxin into the target cell.

Expression of Mosquitocidal Bacillus sphaericus Binary Toxin and B. thuringiensis cry11B Genes in B. thuringiensis 407

  • Park, Hyun-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.185-189
    • /
    • 2001
  • Wild type Bacilus thuringiensis subsp. israelensis and B. sphaericus toxins have been used separately as active in ingredients for bacterial insecticides to control mosquito larvae due to their comparable toxicity to chemical insecticides. Cry11B, recently cloned from B. thuringiensis subsp. jegathesan, shows higher toxicity against three major species of mosquito larvae than Cry11A, one of the major component of B. thuringiensis subsp. israelensis inclusion body. To determine whether the combination of cry11B and B. sphaericus binary toxins is as toxic as B. thuringiensis subsp. israelensis parental strain, cry11B and B. sphaericus binary toxins genes were co-expressed as an operon using cytlA promoters/STAB-SD hybrid expression system in B. thuringiensis subsp. israelensis acrystalliferous strain 4Q7. However, unexpectedly, B. sphaericus binary toxins were barely produced, whereas relatively large amount of Cry11B was produced. When this strain was grown in four different media, NB+G and Peptonized Milk produced more toxin proteins and spores per unit of media than GYS and G-Tris. Toxicity of this strain against fourth instar Culex quinquefasciatus was ranged from of 8.3 to 45.7 ng/ml, with NB+G culture being the highest, and GYS culture was the lowest.

  • PDF

Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus

  • Kunthic, Thittaya;Promdonkoy, Boonhiang;Srikhirin, Toemsak;Boonserm, Panadda
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.674-679
    • /
    • 2011
  • Bacillus sphaericus produces mosquito-larvicidal binary toxin composed of BinA and BinB. While BinB is expected to bind to a specific receptor on the cell membrane, BinA interacts to BinB or BinB receptor complex and translocates into the cytosol to exert its activity via unknown mechanism. To investigate functional roles of aromatic cluster in BinA, amino acids at positions Y213, Y214, Y215, W222 and W226 were substituted by leucine. All mutant proteins were highly produced and their secondary structures were not affected by these substitutions. All mutants are able to insert into lipid monolayers as observed by Langmuir-Blodgett trough and could permeabilize the liposomes in a similar manner as the wild type. However, mosquito-larvicidal activity was abolished for W222L and W226L mutants suggesting that tryptophan residues at both positions play an important role in the toxicity of BinA, possibly involved in the cytopathological process after toxin entry into the cells.

Insecticidal Toxin and Research Trends of Photorhabdus, Entomopathogenic Bacteria (곤충살충성 세균 Photorhabdus의 Insecticidal Toxin과 연구동향)

  • Jang, Eun-Kyung;Shin, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • BT toxin is produced by a soil bacterium Bacillus thuringiensis and has long been used as a biological insecticide without any competition. Recently, Photorhabdus, a symbiotic bacterium from entomopathogenic nematodes, family Heterorhabditae, has been researched and discussed as alternatives to B. thuringiensis. Photorhabdus, which lives in the gut of entomopathogenic nematodes, is a highly virulent pathogen of a wide range of insect larvae. When an insect is infected by the nematodes, the bacteria are released into the cadaver, and produce a number of insecticidal toxins. The biological role of the different Photorhabdus toxins in the infection process is still unclear. Photorhabdus toxin complex (Tc) is highly secreted gut-active toxin and has been characterized as a potent three-component (A, B and C) insecticidal protein complex. These components are necessary for full oral activity against insect larvae. The Photorhabdus PirAB binary toxins exhibit a potent injectable activity for Galleria mellonella larvae, and have oral toxicity against mosquitoes and caterpillar pest Plutella xylostella. Other toxin, 'makes caterpillars floppy' (Mcf) showed injectable activity on caterpillars. Recombinant Mcf triggers apoptosis in both insect hemocytes and the midgut epithelium and carries a BH3 domain. In this review, the relationship between the Photorhabdus and the nematode is discussed and recent important insecticidal toxins from Photorhabdus are described.

Transformation of Citrus with Coleopteran Specific $\delta$-Endotoxin Gene from Bacillus thuringiensis ssp. tenebrionis

  • Rhim, Seong Lyul;Kim, Il Gi;Jin, Tae Eun;Lee, Jin Hyoung;Kuo, Ching I;Suh, Suk Chul;Huang, Li Chun
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.21-24
    • /
    • 2004
  • A modified $\delta$-endotoxin gene of Bacillus thuringiensis ssp. tenebrionis (B.t.t.), encoding a coleoptera-specific toxin, was utilized to transform citrus plants, Citrus reticulata Blanco 'Ponkan' mandarian. By co-culturing the nucelli with Agrobacterium tumefaciens harboring the modified gene in the binary vector pBinAR-Btt, the chimeric toxin gene was transferred into citrus plants. The transgenic plants were selected on modified Murashige and Skoog medium containing kanamycin. Hybridization experiments demonstrated that the transgenic plants contained and expressed the toxin protein gene.

Restoration of Fertility by Suppression of Male Sterility- Induced Gene Using an Antisense Construct (웅성불임 유전자의 발현억제를 이용한 임성회복)

  • Park, Young-Doo;Park, Beom-Seok;Kim, HyunUk;Jin, Yong-Moon
    • Horticultural Science & Technology
    • /
    • v.17 no.4
    • /
    • pp.473-475
    • /
    • 1999
  • This study was carried out to restore the fertility by suppression of male sterility-induced gene using an antisense construct. Tobacco (cv. Petit Havana SR1) was transformed with the binary vector containing a GBAN215-6 promoter, an antisense diphtheria toxin (DTx-A) gene (pKDA215b) and a hygromycin resistant gene. Seventy-six confirmed transgenic plants regenerated from leaf disks were designated as the $R_0$ generation and selfed to produce the $R_1$ generation. From the inheritance study, five $R_1$ lines with multiple copies of the antisense construct were selected and selfed to identify homozygosity for the antisense construct. In order to restore fertility and finally to select restore lines, five $R_2$ lines with multiple copies of the antisense construct were crossed with male sterile plants. From these crosses, three different phenotypes have been observed: completely restored, partially restored, and not restored pollens, and otherwise tobacco plants were phenotypically same as normal plants. These plants were scored for the degree of restoration and selected for further study.

  • PDF

The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium (아그로박테리움을 이용한 Actinobacillus pleuropneumoniae ApxIIA (ApxII toxin) 유전자 발현 옥수수 형질전환체 개발)

  • Kim, Hyun-A;Yoo, Han-Sang;Yang, Moon-Sik;Kwon, Suk-Yoon;Kim, Jin-Seog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.313-318
    • /
    • 2010
  • To develop edible vaccines for swine, the embryogenic calli (type II) derived from HiII genotype were inoculated with A. tumefaciens strain C58C1 containing the binary vector pMYV611, 613, 616, and V621, 622 and 623 respectively. Six of those vectors carry nptII gene which confers resistance to paromomycin and apxIIA gene producing ApxII toxin which is generated in various serum types of A. pleuropneumoniae as a target gene. The 4,120 callus clones for pMYV611, 5,959 callus clones for pMYV613, 7,581 callus clones for pMYV616, 52,329 callus clones for V621, 48,948 callus clones for V622, and 56,188 callus clones for V623 were inoculated. The frequency of positive response clone was confirmed into range of 2.3% - 4.4% for each vectors by NPTII ELISA kit assay, and the selected callus clones of them were finally 3 callus clones from pMYV611 (0.07%), 4 callus clones from pMYV613 (0.07%), 2 callus clones from pMYV616 (0.03%), 51 callus clones from V621 (0.1%), 72 callus clones from V622 (0.15%), and 102 callus clones from V623 (0.18%) respectively. From the selected callus clones of each binary vector, the integration of the apxIIA gene into maize genome was detected from 2 plants of pMYV613 and 2 plants of V623 by Southern blot analysis.