• Title/Summary/Keyword: Binary search

Search Result 287, Processing Time 0.023 seconds

Signal Space Detection for High Data Rate Channels (고속 데이터 전송 채널을 위한 신호공간 검출)

  • Jeon , Taehyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.10 s.340
    • /
    • pp.25-30
    • /
    • 2005
  • This paper generalizes the concept of the signal space detection to construct a fixed delay tree search (FDTS) detector which estimates a block of n channel symbols at a time. This technique is applicable to high speed implementation. Two approaches are discussed both of which are based on efficient signal space partitioning. In the first approach, symbol detection is performed based on a multi-class partitioning of the signal space. This approach is a generalization of binary symbol detection based on a two-class pattern classification. In the second approach, binary signal detection is combined with a look-ahead technique, resulting in a highly parallel detector architecture.

Real-coded Micro-Genetic Algorithm for Nonlinear Constrained Engineering Designs

  • Kim Yunyoung;Kim Byeong-Il;Shin Sung-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.35-46
    • /
    • 2005
  • The performance of optimisation methods, based on penalty functions, is highly problem- dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm (R$\mu$GA) is proposed to find the global optimum of continuous and/or discrete nonlinear constrained engineering problems without handling any of penalty functions. R$\mu$GA can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. The proposed R$\mu$GA approach has been demonstrated by solving three different engineering design problems. From the simulation results, it has been concluded that R$\mu$GA is an effective global optimisation tool for solving continuous and/or discrete nonlinear constrained real­world optimisation problems.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Static Control Flow Analysis of Binary Codes (이진 코드의 정적 제어 흐름 분석)

  • Kim, Ki-Tae;Kim, Je-Min;Yoo, Weon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.70-79
    • /
    • 2010
  • We perform static program analysis for the binary code. The reason you want to analyze at the level of binary code, installed on your local computer, run the executable file without source code. And the reason we want to perform static analysis, static program analysis is to understand what actions to perform on your local computer. In this paper, execution flow graph representing information such as the execution order among functions and the flow of control is generated. Using graph, User can find execution flow of binary file and calls of insecure functions at the same time, and the graph should facilitate the analysis of binary files. In addition, program to be run is ensured the safety by providing an automated way to search the flow of execution, and program to be downloaded and installed from outside is determined whether safe before running.

The Design of RFID System using Group Separation Algorithm (Group Separation 알고리듬을 적용한 RFID system의 구현)

  • Ko, Young-Eun;Lee, Suk-Hui;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, we propose the Group Separation Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Group Separation algorithm identify each Tag_ID bit#s sum of bit #1#. In other words, Group Separation algorithm had standard of selection by collision table, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Group Separation algorithm had performance test that criterions were reader#s number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Group Separation algorithm better than exisiting algorithm.

PHOTOMETRIC SOLUTIONS OF W UMA TYPE STARS: GSC2576-0319 AND GSC2584-1731 (W UMa형 식쌍성 GSC2576-0319와 GSC2584-1731의 측광해)

  • Lee, Chung-Uk;Lee, Jae-Woo;Jin, Ho;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2006
  • High-precision photometric observations were performed in BVI bandpasses using Am robotic telescope at Mt. Lemmon Observatory for two binary stars, which are reclassified as W UMa-type systems from ROTSE(Robotic Optical Transient Search Experiment) follow-up observations and show peculiar light variations. In order to analyze W UMa-type eclipsing binaries systematically, the light curve analysis script using 2005 version of Wilson-Devinney binary code is constructed. The orbital inclinations of GSC2S84-1731 and GSC2576-0319 are $43.^{\circ}5\;and\;57.^{\circ}6$ from light-curve analysis, respectively. Spot model is applied to explain the asymmetric light curve for GSC2S84-1731 and the spot parameters are derived.

Adaptive Decision Algorithm for an Improvement of RFID Anti-Collision (RFID의 효율적인 태그인식을 위한 Adaptive Decision 알고리즘)

  • Ko, Young-Eun;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • in this paper, we propose the Adaptive Decision Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Adaptive Decision algorithm identify smaller one ,each Tag_ID bit's sum of bit '1'. In other words, Adaptive Decision algorithm had standard of selection by actively, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Adaptive Decision algorithm had performance test that criterions were reader's number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Adaptive Decision algorithm better than exisiting algorithm.

Bin Packing Algorithm for Equitable Partitioning Problem with Skill Levels (기량수준 동등분할 문제의 상자 채우기 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.209-214
    • /
    • 2020
  • The equitable partitioning problem(EPP) is classified as [0/1] binary skill existence or nonexistence and integer skill levels such as [1,2,3,4,5]. There is well-known a polynomial-time optimal solution finding algorithm for binary skill EPP. On the other hand, tabu search a kind of metaheuristic has apply to integer skill level EPP is due to unknown polynomial-time algorithm for it and this problem is NP-hard. This paper suggests heuristic greedy algorithm with polynomial-time to find the optimal solution for integer skill level EPP. This algorithm descending sorts of skill level frequency for each field and decides the lower bound(LB) that more than the number of group, packing for each group bins first, than the students with less than LB allocates to each bin additionally. As a result of experimental data, this algorithm shows performance improvement than the result of tabu search.

A Study on the Stochastic Optimization of Binary-response Experimentation (이항 반응 실험의 확률적 전역최적화 기법연구)

  • Donghoon Lee;Kun-Chul Hwang;Sangil Lee;Won Young Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • The purpose of this paper is to review global stochastic optimization algorithms(GSOA) in case binary response experimentation is used and to compare the performances of them. GSOAs utilise estimator of probability of success $\^p$ instead of population probability of success p, since p is unknown and only known by its estimator which has stochastic characteristics. Hill climbing algorithm algorithm, simple random search, random search with random restart, random optimization, simulated annealing and particle swarm algorithm as a population based algorithm are considered as global stochastic optimization algorithms. For the purpose of comparing the algorithms, two types of test functions(one is simple uni-modal the other is complex multi-modal) are proposed and Monte Carlo simulation study is done to measure the performances of the algorithms. All algorithms show similar performances for simple test function. Less greedy algorithms such as Random optimization with Random Restart and Simulated Annealing, Particle Swarm Optimization(PSO) based on population show much better performances for complex multi-modal function.

Clipping Value Estimate for Iterative Tree Search Detection

  • Zheng, Jianping;Bai, Baoming;Li, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.475-479
    • /
    • 2010
  • The clipping value, defined as the log-likelihood ratio (LLR) in the case wherein all the list of candidates have the same binary value, is investigated, and an effective method to estimate it is presented for iterative tree search detection. The basic principle behind the method is that the clipping value of a channel bit is equal to the LLR of the maximum probability of correct decision of the bit to the corresponding probability of erroneous decision. In conjunction with multilevel bit mappings, the clipping value can be calculated with the parameters of the number of transmit antennas, $N_t$; number of bits per constellation point, $M_c$; and variance of the channel noise, $\sigma^2$, per real dimension in the Rayleigh fading channel. Analyses and simulations show that the bit error performance of the proposed method is better than that of the conventional fixed-value method.