This paper described the recognition of the Off-line handwritten Hangul based on neural network using a feature extraction method. Features of Hangul can be extracted by a $5{\times}5$ window method which is the modified $3{\times}3$ mask method. These features are coded to binary patterns in order to use neural network's inputs efficiently. Hangul character is recognized by the consonant, the vertical vowel, and the horizontal vowel, separately. In order to verify the recognition rate, three different coding methods were used for neural networks. Three methods were the fixed-code method, the learned-code I method, and the learned-code II method. The result was shown that the learned-code II method was the best among three methods. The result of the learned-code II method was shown 100% recognition rate for the vertical vowel, 100% for the horizontal vowel, and 98.33% for the learned consonants and 93.75% for the new consonants.
Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.
With the development of virtual reality technology, in recent years, user-friendly hand gesture interface has been more studied for natural interaction with a virtual 3D object. Most earlier studies on the hand-gesture interface are using relatively simple hand gestures. In this paper, we suggest an intuitive hand gesture interface for interaction with 3D object in the virtual reality applications. For hand gesture recognition, first of all, we preprocess various hand data and classify the data through the binary decision tree. The classified data is re-sampled and converted to the chain-code, and then constructed to the hand feature data with the histograms of the chain code. Finally, the input gesture is recognized by MCSVM-based machine learning from the feature data. To test our proposed hand gesture interface we implemented a 'Virtual Block' game. Our experiments showed about 99.2% recognition ratio of 16 kinds of command gestures and more intuitive and user friendly than conventional mouse interface.
Despite the importance of how the premedical education curriculum is organized, the basic direction of the curriculum has not been evaluated at a fundamental level. In order to explore the basic directions of the premedical education curriculum, this study examined medical education as a university education, the historical basis of premedical education, and the direction of the premedical education curriculum. Historically, as medical education was incorporated into the university education system, premedical education developed based on basic science and liberal arts education. Accordingly, the direction of the premedical education curriculum began to split into two approaches: one believing in a basic science-based education intended to serve as the foundation of medical training, and the other believing in a liberal arts-based education intended to cultivate the qualities of a doctor. In recent years, however, the binary division in the direction of premedical education has ceased to exist, and the paradigm has now shifted to an agreement that premedical education must cultivate the basic scientific competence required for learning medical knowledge as well as the social qualities that a doctor should have, which are cultivated through the liberal arts. Furthermore, it has been asserted that the direction of premedical education should move toward the qualities that will be required in the future. With the fourth industrial revolution underway, the role of doctors is now being re-examined. This means that today's medical education must change in a future-oriented way, and the direction of the premedical education curriculum must be on the same page.
Detection of abnormal signal generally can be done by using features of normal signals as main information because of data imbalance. This paper propose an efficient method for abnormal signal detection using parallel AutoEncoder (AE) which can use features of abnormal signals as well. The proposed Parallel AE (PAE) is composed of a normal and an abnormal reconstructors having identical AE structure and train features of normal and abnormal signals, respectively. The PAE can effectively solve the imbalanced data problem by sequentially training normal and abnormal data. For further detection performance improvement, additional binary classifier can be added to the PAE. Through experiments using public acoustic data, we obtain that the proposed PAE shows Area Under Curve (AUC) improvement of minimum 22 % at the expenses of training time increased by 1.31 ~ 1.61 times to the single AE. Furthermore, the PAE shows 93 % AUC improvement in detecting abnormal underwater acoustic signal when pre-trained PAE is transferred to train open underwater acoustic data.
This study was conducted to diagnose the issues of AI ethics in global content and to discuss what kind of discourse is needed to strengthen human identity. To this end, the study selected Netflix original content "The Social Dilemma" for analysis and adopted narrative analysis as the research method. The analysis results confirmed that "Social Dilemma" showed the structure of a traditional current affairs documentary and mainly used experts and statistical data to develop the story. It also reinforced core content claims by enumerating domestic and foreign cases such as the 2021 Myanmar massacre and the spread of fake news. In addition, the relationship between the characters clearly revealed the binary opposition between developers and media companies as well as users and advertisers. For the solution to the problem, strong regulations on businesses and the suspension of social media use were reached. However, "The Social Dilemma" merely pointed out the misuse of AI technology and had a narrative that ignored human identity and social relationships. Such results raise the need for creating contents that emphasize the importance of human sociality, relationships, and learning ability in the age of AI.
Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.
Journal of the International Relations & Interdisciplinary Education
/
v.1
no.1
/
pp.61-79
/
2021
In order to implement an artificial intelligence lawyer, this study looked at how to structure legal principles, and then gave specific examples of how structured legal principles can be expressed in predicate logic. While previous studies suggested a method of introducing predicate logic for the reasoning engine of artificial intelligence lawyers, this study focused on the method of expressing legal principles with predicate logic based on the structural appearance of legal principles. Jurisprudence was limited to the content of articles and precedents, and the vertical hierarchy leading to 'law facts - legal requirements - legal effect' and the horizontal hierarchy leading to 'legal effect - defense - defense' were examined. In addition, legal facts were classified and explained that most of the legal facts can be usually expressed in unary or binary predicates. In future research, we plan to program the legal principle expressed in predicate logic and realize an inference engine for artificial intelligence lawyers.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.123-130
/
2022
Recently, studies on the detection and classification of Android malware based on API Call sequence have been actively carried out. However, API Call sequence based malware classification has serious limitations such as excessive time and resource consumption in terms of malware analysis and learning model construction due to the vast amount of data and high-dimensional characteristic of features. In this study, we analyzed various classification models such as LightGBM, Random Forest, and k-Nearest Neighbors after significantly reducing the dimension of features using PCA(Principal Component Analysis) for CICAndMal2020 dataset containing vast API Call information. The experimental result shows that PCA significantly reduces the dimension of features while maintaining the characteristics of the original data and achieves efficient malware classification performance. Both binary classification and multi-class classification achieve higher levels of accuracy than previous studies, even if the data characteristics were reduced to less than 1% of the total size.
In this study, pneumonia identification networks with the small number of layers were constructed by using chest X-ray images. The networks had similar trainable-parameters, and the performance of the trained models was quantitatively evaluated with the modification of the network architectures. A total of 6 networks were constructed: convolutional neural network (CNN), VGGNet, GoogleNet, residual network with identity blocks, ResNet with bottleneck blocks and ResNet with identity and bottleneck blocks. Trainable parameters for the 6 networks were set in a range of 273,921-294,817 by adjusting the output channels of convolution layers. The network training was implemented with binary cross entropy (BCE) loss function, sigmoid activation function, adaptive moment estimation (Adam) optimizer and 100 epochs. The performance of the trained models was evaluated in terms of training time, accuracy, precision, recall, specificity and F1-score. The results showed that the trained models with the small number of layers precisely detect pneumonia from chest X-ray images. In particular, the overall quantitative performance of the trained models based on the ResNets was above 0.9, and the performance levels were similar or superior to those based on the CNN, VGGNet and GoogleNet. Also, the residual blocks affected the performance of the trained models based on the ResNets. Therefore, in this study, we demonstrated that the object detection networks with the small number of layers are suitable for detecting pneumonia using chest X-ray images. And, the trained models based on the ResNets can be optimized by applying appropriate residual-blocks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.