• Title/Summary/Keyword: Binary image

Search Result 987, Processing Time 0.03 seconds

Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks (순차 램 기반 누적 신경망을 이용한 수화 인식)

  • Lee, Dong-Hyung;Kang, Man-Mo;Kim, Young-Kee;Lee, Soo-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.205-211
    • /
    • 2009
  • The Weightless Neural Network(WNN) has the advantage of the processing speed, less computability than weighted neural network which readjusts the weight. Especially, The behavior information such as sequential gesture has many serial correlation. So, It is required the high computability and processing time to recognize. To solve these problem, Many algorithms used that added preprocessing and hardware interface device to reduce the computability and speed. In this paper, we proposed the Ram based Sequential Cumulative Neural Network(SCNN) model which is sign language recognition system without preprocessing and hardware interface. We experimented with using compound words in continuous korean sign language which was input binary image with edge detection from camera. The recognition system of sign language without preprocessing got 93% recognition rate.

  • PDF

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.

The Skeletonization of 2-Dimensional Image for Fuzzy Mathematical Morphology using Defuzzification (비퍼지화를 이용한 퍼지 수학적 형태학의 2차원 영상의 골격화)

  • Park, In-Kue;Lee, Wan-Bum
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Based on similarities between fuzzy set theory and mathematical morphology, Grabish proposed a fuzzy morphology based on the Sugeno fuzzy integral. This paper proposes a fuzzy mathematical morphology based on the defuzzification of the fuzzy measure which corresponds to fuzzy integral. Its process makes a fuzzy set used as a measure of the inclusion of each fuzzy measure for subsets. To calculate such an integral a $\lambda$-fuzzy measure is defined which gives every subsets associated with the universe of discourse, a definite non-negative weight. Fast implementable definitions for erosion and dilation based on the fuzzy measure was given. An application for robust skeletonization of two-dimensional objects was presented. Simulation examples showed that the object reconstruction from their skeletal subsets that can be achieved by using the proposed was better than by using the binary mathematical morphology in most cases.

  • PDF

Multipurpose Watermarking Scheme Based on Contourlet Transform (컨투어렛 변환 기반의 다중 워터마킹 기법)

  • Kim, Ji-Hoon;Lee, Suk-Hwan;Park, Seung-Seob;Kim, Ji-Hong;Oh, Sei-Woong;Seo, Yong-Su;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.929-940
    • /
    • 2009
  • This paper presents multipurpose watermarking scheme in coutourlet transform domain for copyright protection, authentication and transform detection. Since contourlet transform can detect more multi direction edge and smooth contour than wavelet transform, the proposed scheme embeds multi watermarks in contourlet domain based on 4-level Laplacian pyramid and 2-level directional filter bank. In the first stage of the robust watermarking scheme for copyright protection, we generates the sequence of circle patterns according to watermark bits and projects these patterns into the average of magnitude coefficients of high frequency directional subbands. Then the watermark bit is embedded into variance distribution of the projected magnitude coefficients. In the second stage that is the semi-fragile watermarking scheme for authentication and transform detection, we embed the binary watermark image in the low frequency subband of higher level by using adaptive quantization modulation scheme. From the evaluation experiment using Checkmark 2.1, we verified that the proposed scheme is superior to the conventional scheme in a view of the robustness and the invisibility.

  • PDF

A Study on the Novel Optical/Digital Invariant Recognition for Recognizing Patterns with Straight Lines (직선패턴 인식을 위한 새로운 광/디지틀 불변 인식에 관한 연구)

  • Huh, Hyun;Jung, Dong-Gyu;Kang, Dong-Seung;Pan, Jae-Kyung;,
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.116-123
    • /
    • 1994
  • A novel opto-digital pattern recognition method which has shift, rotation, and scale invariant properties is proposed for recognizing two dimensional images having straight lines. The algorithm is composed of three stages. In the first stage the line features of the image are extracted. The second stage imposes the shift, rotation, and scale invariant properties on the extracted features through normalizing procedure. The required normalizing equations are analytically explained. In the last stage, the artificial feedforward neural network is trained with the extracted features. In order to evaluated the proposed algorithm, nine different edge enhnaced binary images composed of straight lines are tested. Thus the proposed algorithm can recognize the patterns event though they are shifted, rotated, and scaled.

  • PDF

Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map (토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지)

  • Park, Nyunghee;Kim, Donghak;Ahn, Jaeyoon;Choi, Jaewan;Park, Wanyong;Park, Hyunchun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1075-1087
    • /
    • 2017
  • In this study, we tried to utilize results of the change detection analysis for satellite images as the basis for updating the land cover map. The Sequential Spectral Change Vector Analysis ($S^2CVA$) was applied to multi-temporal multispectral satellite imagery in order to extract changed areas, efficiently. Especially, we minimized the false alarm rate of unsupervised change detection due to the seasonal variation using the direction information in $S^2CVA$. The binary image, which is the result of unsupervised change detection, was integrated with the existing land cover map using the zonal statistics. And then, object-based analysis was performed to determine the changed area. In the experiment using PlanetScope data and the land cover map of the Ministry of Environment, the change areas within the existing land cover map could be detected efficiently.

An Efficient Shape-Feature Computing Method from Boundary Sequences of Arbitrary Shapes (임의 형상의 윤곽선 시퀀스 정보로부터 형상 특징의 효율적인 연산 방법)

  • 김성옥;김동규;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2002
  • A boundary sequence can be a good representation of arbitrary shapes, because it can represent them simply and precisely. However, boundary sequences have not been used as a representation of arbitrary shapes, because the pixel-based shape-features such as area, centroid, orientation, projection and so forth, could not be computed directly from them. In this paper, we show that the shape-features can be easily computed from the boundary sequences by introducing the cross-sections that are defined as vertical (or horizontal) line segments in a shape. A cross-section generation method is proposed, which generates cross-sections of the shape efficiently by tracing the boundary sequence of the shape once. Furthermore, a boundary sequence extraction method is also proposed, which generates a boundary sequence for each shape in a binary image automatically The proposed methods work well even if a shape has holes. Eventually, we show that a boundary sequence can be used effectively for representing arbitrary shapes.

  • PDF

Improvement of Face Recognition Rate by Normalization of Facial Expression (표정 정규화를 통한 얼굴 인식율 개선)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Facial expression, which changes face geometry, usually has an adverse effect on the performance of a face recognition system. To improve the face recognition rate, we propose a normalization method of facial expression to diminish the difference of facial expression between probe and gallery faces. Two approaches are used to facial expression modeling and normalization from single still images using a generic facial muscle model without the need of large image databases. The first approach estimates the geometry parameters of linear muscle models to obtain a biologically inspired model of the facial expression which may be changed intuitively afterwards. The second approach uses RBF(Radial Basis Function) based interpolation and warping to normalize the facial muscle model as unexpressed face according to the given expression. As a preprocessing stage for face recognition, these approach could achieve significantly higher recognition rates than in the un-normalized case based on the eigenface approach, local binary patterns and a grey-scale correlation measure.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Hardware Design for JBIG2 Huffman Coder (JBIG2 허프만 부호화기의 하드웨어 설계)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.200-208
    • /
    • 2009
  • JBIG2, as the next generation standard for binary image compression, must be designed in hardware modules for the JBIG2 FAX to be implemented in an embedded equipment. This paper proposes a hardware module of the high-speed Huffman coder for JBIG2. The Huffman coder of JBIG2 uses selectively 15 Huffman tables. As the Huffman coder is designed to use minimal data and have an efficient memory usage, high speed processing is possible. The designed Huffman coder is ported to Virtex-4 FPGA and co-operating with a software modules on the embedded development board using Microblaze core. The designed IP was successfully verified using the simulation function test and hardware-software co-operating test. Experimental results shows the processing time is 10 times faster than that of software only on embedded system, because of hardware design using an efficient memory usage.

  • PDF