• Title/Summary/Keyword: Binary image

Search Result 987, Processing Time 0.032 seconds

Development of Displacement Measurement System of Structures Using Image Processing Techniques (영상처리기술을 이용한 구조물의 변위 측정 시스템의 개발)

  • 김성욱;김상봉;서진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.673-679
    • /
    • 2004
  • In this paper, we develop the displacement measurement system of multiple moving objects based on image processing techniques. The image processing method adopts inertia moment theory for obtaining the centroid measurement of the targets and basic processing algorithm of gray, binary, closing, labeling and so on. To get precise displacement measurement in spite of multiple moving targets, a CGD camera with zoom is used and the position of camera is changed by a pan/tilt system. The fiducial marks on the fixed positions are used as the sensing points for the image processing to recognize the position errors in direction of XY-coordinates. The precise alignment device is pan/tilt of XY-type and the pan/tilt is controlled by DC servomotors which are driven by a microprocessor. Morover, the centers of fiducial marks are obtainted by an inertia moment method. By applying the developed precise position control system for multiple targets, the displacement of multiple moving targets are detected automatically and are also stored in the database system in a real time. By using database system and internet, the displacement datum can be confirmed at a great distance and analyzed. Finally, the effectiveness of developed system is shown in experimental results and realized the precision about 0.12[mm] in the position control of XY-coordinates.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Fast Text Line Segmentation Model Based on DCT for Color Image (컬러 영상 위에서 DCT 기반의 빠른 문자 열 구간 분리 모델)

  • Shin, Hyun-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.463-470
    • /
    • 2010
  • We presented a very fast and robust method of text line segmentation based on the DCT blocks of color image without decompression and binary transformation processes. Using DC and another three primary AC coefficients from block DCT we created a gray-scale image having reduced size by 8x8. In order to detect and locate white strips between text lines we analyzed horizontal and vertical projection profiles of the image and we applied a direct markov model to recover the missing white strips by estimating hidden periodicity. We presented performance results. The results showed that our method was 40 - 100 times faster than traditional method.

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

Research on Water Edge Extraction in Islands from GF-2 Remote Sensing Image Based on GA Method

  • Bian, Yan;Gong, Yusheng;Ma, Guopeng;Duan, Ting
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.947-959
    • /
    • 2021
  • Aiming at the problem of low accuracy in the water boundary automatic extraction of islands from GF-2 remote sensing image with high resolution in three bands, new water edges automatic extraction method in island based on GF-2 remote sensing images, genetic algorithm (GA) method, is proposed in this paper. Firstly, the GA-OTSU threshold segmentation algorithm based on the combination of GA and the maximal inter-class variance method (OTSU) was used to segment the island in GF-2 remote sensing image after pre-processing. Then, the morphological closed operation was used to fill in the holes in the segmented binary image, and the boundary was extracted by the Sobel edge detection operator to obtain the water edge. The experimental results showed that the proposed method was better than the contrast methods in both the segmentation performance and the accuracy of water boundary extraction in island from GF-2 remote sensing images.

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

EXTRACTION OF THE LEAN TISSUE BOUNDARY OF A BEEF CARCASS

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.715-721
    • /
    • 2000
  • In this research, rule and neuro net based boundary extraction algorithm was developed. Extracting boundary of the interest, lean tissue, is essential for the quality evaluation of the beef based on color machine vision. Major quality features of the beef are size, marveling state of the lean tissue, color of the fat, and thickness of back fat. To evaluate the beef quality, extracting of loin parts from the sectional image of beef rib is crucial and the first step. Since its boundary is not clear and very difficult to trace, neural network model was developed to isolate loin parts from the entire image input. At the stage of training network, normalized color image data was used. Model reference of boundary was determined by binary feature extraction algorithm using R(red) channel. And 100 sub-images(selected from maximum extended boundary rectangle 11${\times}$11 masks) were used as training data set. Each mask has information on the curvature of boundary. The basic rule in boundary extraction is the adaptation of the known curvature of the boundary. The structured model reference and neural net based boundary extraction algorithm was developed and implemented to the beef image and results were analyzed.

  • PDF

A Statistical Image Segmentation Method in the Hierarchical Image Structure (계층적 영상구조에서 통계적 방법에 의한 영상분할)

  • 최성진
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • In this paper, the image segmentation method based on the hierarchical pyramid image structure of reduced resolution versions of the image for solving the problems in the conventional methods is presented. This method is described the object detection and delineation by statistical approach. In the object detection method, IFSVR( Inverse-father-son variance ratio) method and FSVR(father-son variance ratio ) method are proposed for solving clustering validity problem occurred In the hierarchical pyramid image structure. An optimal object pixel Is detected at some level by this method. In the object delineation method, the iterative algorithm by top-down traversing method is proposed for moving the optimal object pixel to levels of higher resolution. Using the computer simulation, the results by the proposed statistical methods and object traversing method are investigated for the binary Image and the real image. At the results of computer simulation, the proposed methods of image segmentation based on the hierarchical pyramid Image structure seem to have useful properties and deserve consideration as a possible alternative to existing methods of image segmentation. The computation for the proposed method is required 0(log n) for n${\times}$n input image.

  • PDF

Block Adaptive Binarization of Business Card Images Acquired in PDA Using a Modified Quadratic filter (변형된 Quadratic 필터를 이용한 PDA로 획득한 명함 영상의 블록 적응 이진화)

  • 신기택;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.801-814
    • /
    • 2004
  • In this paper, we propose a block adaptive binarization (BAB) using a modified quadratic filter (MQF) to binarize business card images acquired by personal digital assistant (PDA) cameras effectively. In the proposed method, a business card image is first partitioned into blocks of 8${\times}$8 and the blocks are then classified into character Hocks (CBs) and background blocks (BBs). Each classified CB is windowed with a 24${\times}$24 rectangular window centering around the CB and the windowed blocks are improved by the pre-processing filter MQF, in which the scheme of threshold selection in QF is modified. The 8${\times}$8 center block of the improved block is barbarized with the threshold selected in the MQF. A binary image is obtained tiling each binarized block in its original position. Experimental results show that the MQF and the BAB have much better effects on the performance of binarization compared to the QF and the global binarization (GB), respectively, for the test business card images acquired in a PDA. Also the proposed BAB using MQF gives binary images of much better quality, in which the characters appear much better clearly, over the conventional GB using QF. In addition, the binary images by the proposed BAB using MQF yields about 87.7% of character recognition rate so that about 32.0% performance improvement over those by the GB using QF yielding about 55.7% of character recognition rate using a commercial character recognition software.

Bayesian Image Restoration Using a Continuation Method (연속방법을 사용한 Bayesian 영상복원)

  • Lee, Soo-Jin
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 1998
  • One approach to improved image restoration methods has been the incorporation of additional source information via Gibbs priors that assume a source that is piecewise smooth. A natural Gibbs prior for expressing such constraints is an energy function defined on binary valued line processes as well as source intensities. However, the estimation of both continuous variables and binary variables is known to be a difficult problem. In this work, we consider the application of the deterministic annealing method. Unlike other methods, the deterministic annealing method offers a principled and efficient means of handling the problems associated with mixed continuous and binary variable objectives. The application of the deterministic annealing method results in a sequence of objective functions (defined only on the continuous variables) whose sequence of solutions approaches that of the original mixed variable objective function. The sequence is indexed by a control parameter (the temperature). The energy functions at high temperatures are smooth approximations of the energy functions at lower temperatures. Consequently, it is easier to minimize the energy functions at high temperatures and then track the minimum through the variation of the temperature. This is the essence of a continuation method. We show experimental results, which demonstrate the efficacy of the continuation method applied to a Bayesian restoration model.

  • PDF