Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.3.311

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles  

Phromsuwan, U. (Magnet Laboratory, School of Science, Walailak University)
Sirisathitkul, C. (Magnet Laboratory, School of Science, Walailak University)
Sirisathitkul, Y. (School of Informatics, Walailak University)
Uyyanonvara, B. (School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University)
Muneesawang, P. (Department of Electrical and Computer Engineering, Faculty of Engineering, Naresuan University)
Publication Information
Abstract
Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.
Keywords
microscope image processing; magnetic nanoparticles; canny edge detector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Bonnet, Micron 35, 635 (2004).   DOI   ScienceOn
2 S. B. Wang, Y. Z. Fang, H. K. Jia, L. A. Li, Z. Y. Wang, and S. J. Zhang, Opt. Laser Eng. 48, 1140 (2010).   DOI   ScienceOn
3 A. De Santis, O. Di Bartolomeo, D. Iacoviello, and F. Iacoviello, J. Mater. Process. Technol. 196, 292 (2008).   DOI   ScienceOn
4 A. Guha, C. Amarnath, S. Pateria, and R. Mittal, J. Text. I. 101, 214 (2010).   DOI   ScienceOn
5 K. Mogireddy, V. Devabhaktuni, A. Kumar, P. Aggarwal, and P. Bhattacharya, J. Hazard. Mater. 186, 1254 (2011).   DOI   ScienceOn
6 Y. Midoh, K. Nakamae, and H. Fujioka, Meas. Sci. Technol. 18, 579 (2007).   DOI   ScienceOn
7 K. S. Sim, H. Y. Ting, M. A. Lai, and C. P. Tso, J. Microsc.- Oxford 234, 243 (2009).   DOI   ScienceOn
8 V. Ortalan, M. Herrera, D. G. Morgan, and N. D. Browning, Ultramicroscopy 110, 67 (2009).   DOI   ScienceOn
9 T. R. Wojcik and D. Krapf, IEEE Photonic. J. 3, 337 (2011).   DOI   ScienceOn
10 S. Sun, Adv. Mater. 18, 393 (2006).   DOI   ScienceOn
11 U. Phromsuwan, C. Sirisathitkul, Y. Sirisathitkul, and C. Sriphung, Int. J. Phys. Sci. 7, 1959 (2012).
12 G. H. Woehrle, J. E. Hutchison, S. Ozkar, and R. G. Finke, Turk. J. Chem. 30, 1 (2006).
13 K. Chokprasombat, C. Sirisathitkul, P. Harding, S. Chandarak, and R. Yimnirun, J. Nanomat. 758429 (2012).