• Title/Summary/Keyword: Binary Static Analysis

Search Result 32, Processing Time 0.01 seconds

Static Control Flow Analysis of Binary Codes (이진 코드의 정적 제어 흐름 분석)

  • Kim, Ki-Tae;Kim, Je-Min;Yoo, Weon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.70-79
    • /
    • 2010
  • We perform static program analysis for the binary code. The reason you want to analyze at the level of binary code, installed on your local computer, run the executable file without source code. And the reason we want to perform static analysis, static program analysis is to understand what actions to perform on your local computer. In this paper, execution flow graph representing information such as the execution order among functions and the flow of control is generated. Using graph, User can find execution flow of binary file and calls of insecure functions at the same time, and the graph should facilitate the analysis of binary files. In addition, program to be run is ensured the safety by providing an automated way to search the flow of execution, and program to be downloaded and installed from outside is determined whether safe before running.

Design and Implementation of Framework for Static Execution Flow Trace of Binary Codes (이진 코드의 정적 실행 흐름 추적을 위한 프레임워크 설계 및 구현)

  • Baek, Yeong-Tae;Kim, Ki-Tae;Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.51-59
    • /
    • 2011
  • In domestic, the binary code analysis technology is insufficient. In general, an executable file that is installed on your computer without the source code into an executable binary files is given only the most dangerous, or because it is unknown if the action is to occur. In this paper, static program analysis at the binary level to perform the design and implementation framework. In this paper, we create a control flow graph. We use the graph of the function call and determine whether dangerous. Through Framework, analysis of binary files is easy.

An LLVM-Based Implementation of Static Analysis for Detecting Self-Modifying Code and Its Evaluation (자체 수정 코드를 탐지하는 정적 분석방법의 LLVM 프레임워크 기반 구현 및 실험)

  • Yu, Jae-IL;Choi, Kwang-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • Self-Modifying-Code is a code that changes the code by itself during execution time. This technique is particularly abused by malicious code to bypass static analysis. Therefor, in order to effectively detect such malicious codes, it is important to identify self-modifying-codes. In the meantime, Self-modify-codes have been analyzed using dynamic analysis methods, but this is time-consuming and costly. If static analysis can detect self-modifying-code it will be of great help to malicious code analysis. In this paper, we propose a static analysis method to detect self-modified code for binary executable programs converted to LLVM IR and apply this method by making a self-modifying-code benchmark. As a result of the experiment in this paper, the designed static analysis method was effective for the standardized LLVM IR program that was compiled and converted to the benchmark program. However, there was a limitation in that it was difficult to detect the self-modifying-code for the unstructured LLVM IR program in which the binary was lifted and transformed. To overcome this, we need an effective way to lift the binary code.

Detecting TOCTOU Race Condition on UNIX Kernel Based File System through Binary Analysis (바이너리 분석을 통한 UNIX 커널 기반 File System의 TOCTOU Race Condition 탐지)

  • Lee, SeokWon;Jin, Wen-Hui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.701-713
    • /
    • 2021
  • Race Condition is a vulnerability in which two or more processes input or manipulate a common resource at the same time, resulting in unintended results. This vulnerability can lead to problems such as denial of service, elevation of privilege. When a vulnerability occurs in software, the relevant information is documented, but often the cause of the vulnerability or the source code is not disclosed. In this case, analysis at the binary level is necessary to detect the vulnerability. This paper aims to detect the Time-Of-Check Time-Of-Use (TOCTOU) Race Condition vulnerability of UNIX kernel-based File System at the binary level. So far, various detection techniques of static/dynamic analysis techniques have been studied for the vulnerability. Existing vulnerability detection tools using static analysis detect through source code analysis, and there are currently few studies conducted at the binary level. In this paper, we propose a method for detecting TOCTOU Race Condition in File System based on Control Flow Graph and Call Graph through Binary Analysis Platform (BAP), a binary static analysis tool.

A Base Address Analysis Tool for Static Analysis of ARM Architecture-Based Binary (ARM 아키텍처 기반 바이너리 정적 분석을 위한 기준 주소 분석 도구)

  • Kang, Ji-Hun;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1185-1189
    • /
    • 2016
  • In modern society, the number of embedded devices has been increasing. However, embedded devices is growing, and the backdoor and vulnerabilities are found continously. It is necessary for this analysis. In this paper, we developed a tool to extract the base address information for the static analysis environment built of the embedded device's firmware. By using this tool, we built the environment for static analysis. As a result, this point enables us to parse the strings and to check the reference. Also, through the increased number of functions, we proved the validity of the tool.

A Out-of-Bounds Read Vulnerability Detection Method Based on Binary Static Analysis (바이너리 정적 분석 기반 Out-of-Bounds Read 취약점 유형 탐지 연구)

  • Yoo, Dong-Min;Jin, Wen-Hui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.687-699
    • /
    • 2021
  • When a vulnerability occurs in a program, it is documented and published through CVE. However, some vulnerabilities do not disclose the details of the vulnerability and in many cases the source code is not published. In the absence of such information, in order to find a vulnerability, you must find the vulnerability at the binary level. This paper aims to find out-of-bounds read vulnerability that occur very frequently among vulnerability. In this paper, we design a memory area using memory access information appearing in binary code. Out-of-bounds Read vulnerability is detected through the designed memory structure. The proposed tool showed better in code coverage and detection efficiency than the existing tools.

Detecting Software Similarity Using API Sequences on Static Major Paths (정적 주요 경로 API 시퀀스를 이용한 소프트웨어 유사성 검사)

  • Park, Seongsoo;Han, Hwansoo
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1007-1012
    • /
    • 2014
  • Software birthmarks are used to detect software plagiarism. For binaries, however, only a few birthmarks have been developed. In this paper, we propose a static approach to generate API sequences along major paths, which are analyzed from control flow graphs of the binaries. Since our API sequences are extracted along the most plausible paths of the binary codes, they can represent actual API sequences produced from binary executions, but in a more concise form. Our similarity measures use the Smith-Waterman algorithm that is one of the popular sequence alignment algorithms for DNA sequence analysis. We evaluate our static path-based API sequence with multiple versions of five applications. Our experiment indicates that our proposed method provides a quite reliable similarity birthmark for binaries.

Exploit the method according to the function call (동적 링크를 활용한 특정 함수 호출)

  • OK, Geun Ho;Kang, Young-Jin;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.755-758
    • /
    • 2016
  • In this paper, binary in the program function is to be called binary explain the function in any way to call with in the binary. And the functions required during the call to the elements and their dynamic links in the compilation process and its elements and C-language file describes the concept of 'linker' that connects, and static links and dynamic link Compare analysis differences. Also Do an experiment on Return To Dynamic Linker exploit.

  • PDF

Analyzing Differences of Binary Executable Files using Program Structure and Constant Values (프로그램의 구조와 상수 값을 이용하는 바이너리 실행 파일의 차이점 분석)

  • Park, Hee-Wan;Choi, Seok-Woo;Seo, Sun-Ae;Han, Tai-Sook
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.452-461
    • /
    • 2008
  • Binary diffing is a method to find differences in similar binary executables such as two different versions of security patches. Previous diffing methods using flow information can detect control flow changes, but they cannot track constant value changes. Biffing methods using assembly instructions can detect constant value changes, but they give false positives which are due to compiling methods such as instruction reordering. We present a binary diffing method and its implementation named SCV which utilizes both structure and value information. SCV summarizes structure and constant value information from disassembled code, and matches the summaries to find differences. By analyzing a Microsoft Windows security patches, we showed that SCV found necessary differences caused by constant value changes which the state-of-the-art binary diffing tool BinDiff failed to find.

Framework for Static Control Flow Analysis of Binary Codes (바이너리 코드의 정적 제어 흐름 분석을 위한 프레임워크)

  • Baek, Yeong-Tae;Kim, Ki-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.67-70
    • /
    • 2010
  • 본 논문은 바이너리 코드 수준에서 정적인 프로그램 분석을 수행하는 프레임워크를 설계 및 구현한다. 정적으로 바이너리 코드 수준에서 분석을 수행하려는 이유는 일반적으로 컴퓨터에 설치되는 실행 파일은 소스 코드 없이 단지 바이너리로 된 실행 파일만 주어지는 경우가 대부분이고, 정적 제어 흐름 분석을 통해 수행 전에 동작을 파악하기 위해서이다. 본 논문에서는 바이너리 실행 파일로부터 실행 순서 및 제어 흐름 등의 정보를 표현할 수 있는 제어 흐름 그래프를 작성하여 바이너리 파일의 실행 흐름과 위험한 함수의 호출 여부를 동시에 파악할 수 있도록 하며, 그래프 시각화를 통해 바이너리 파일의 분석을 용이하게 한다. 또한 실행 흐름에 대한 자동 탐색 방법을 제공한다.

  • PDF