본 연구의 목적은 예비교원의 도움 네트워크에 관한 통계모형을 경험적으로 비교하는 것이다. 특히 이항 및 가중 ERGM 결과를 토대로 공통점과 차이점을 파악하는 것이다. 연구문제는 첫째, 예비교원의 이항 및 가중 도움 네트워크 선택요인간의 공통점은 무엇인가? 둘째, 예비교원의 이항 및 가중 도움 네트워크 선택요인간의 차이점은 무엇인가? 이다. 이를 위해 예비교원(N=42)의 도움 및 친구 네트워크와 행복감, 그리고 개인특성을 측정하였다. 분석결과 첫째, 예비교원의 이항 및 가중 도움 네트워크 선택요인간의 공통점은 관계 의존성(호혜성, 전이성), 유사성(전공, 성별), 활동성(유아교육전공, 부정정서), 대중성(유아교육전공), 다중성(친구네트워크) 효과로 나타났다. 둘째, 예비교원의 이항 및 가중 도움 네트워크 선택요인간의 차이점은 활동성(체육교육전공), 대중성(학점, 부정정서) 효과로 나타났다. 이러한 연구결과를 토대로 시사점을 제시하였다.
본 논문에서는 이진 영상의 2차원 히스토그램을 이용하여 추출한 형태 정보와 HSI 컬러 좌표를 이용한 색상 정보를 결합한 영상 검색 기법을 제안한다. 또한, 제안된 방식은 부분영상의 유사도 비교를 통한 영상의 위치 정보를 추출한다 이 검색 기법을 형태 정보와 색상 정보에 활용함으로써 이진 영상으로 비교가 힘든 영역 정보의 검색도 가능하게 한다 그 결과 기존의 색상기반 영상 검색 기법에 비해 제안된 기법은 Frecision/Recall로 표현된 정량적 결과에서 훨씬 우수한 성능을 보임을 실험으로 확인할 수 있다. 특히, 제안된 검색 기법은 영상의 회전이나 객체의 이동 등이 발생한 영상에 대해서도 우수한 검색 효율을 보인다.
본 논문은 위성영상을 이용한 변화정보를 취득하는데 있어 중요한 과정인 임계값 결정에 관한 새로운 기법을 제안하고 있다. 화소간 유사도 측정을 통해 도출된 결과 값을 일정 간격으로 누적 계산하고, 급격하게 변하는 지점을 임계값으로 결정하였다. 의사영상을 통해 기대최대화 기법, 교점방법과 성능을 비교하였으며, 두 시기의 ALI 영상과 Hyperion 영상에 실제 적용하여 변화탐지 결과를 확인하였다. 제안된 기법은 기존의 기법과 비슷한 수준의 변화탐지 결과 정확도를 확보할 수 있었으며, 기대최대화 기법에 비해 간단하게 적용할 수 있고, 교점방법과 달리 최빈 값을 둘 이상 가지는 히스토그램에도 적용할 수 있는 장점이 있어 향후 변화유무 정보 취득에 효과적으로 사용할 수 있을 것으로 기대한다.
소프트웨어의 유사성 비교는 소스코드를 대상으로 한다. 소스코드는 프로그램 언어로 표현된 개발자의 지적 저작권으로 보호된다. 문서형식으로 작성된 프로그램 소스코드는 개발자의 전문지식과 아이디어가 포함된 내용을 포함하고 있다. 소프트웨어 저작권의 불법도용을 판단하기 위한 감정 작업은 원본과 비교본의 소스 코드를 대상으로 파일의 구성과 내용을 검증하는 방법으로 수행된다. 그러나 실제적으로 피고소인 측의 불성실한 목적물 제공으로 소스코드의 일대일 비교감정이 어려운 상황이 증가하고 있다. 이 경우 실행코드에 대한 비교감정이 수행되어야 하며, 역어셈블 방법, 역공학기법, 기능실행의 시퀀스 분석 등의 간접적인 방법이 적용된다. 본 논문에서는 소스코드제공이 어려운 상황에서 시스템과 실행코드 파일을 대상하는 하는 감정 사례를 통해 간접적인 비교결과의 유효성에 대해 분석하고, 감정결과에 활용하는 방안을 제시한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.4300-4314
/
2019
With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.
In this paper, we propose an efficient hyperplane generation technique to classify human activity from combination of events and sequence information obtained from multiple-event sensors. By generating hyperplane efficiently, our machine learning algorithm classify with less memory and run time than the LSVM (Linear Support Vector Machine) for embedded system. Because the fact that light weight and high speed algorithm is one of the most critical issue in the IoT, the study can be applied to smart home to predict human activity and provide related services. Our approach is based on reducing numbers of hyperplanes and utilizing robust string comparing algorithm. The proposed method results in reduction of memory consumption compared to the conventional ML (Machine Learning) algorithms; 252 times to LSVM and 34,033 times to LSTM (Long Short-Term Memory), although accuracy is decreased slightly. Thus our method showed outstanding performance on accuracy per hyperplane; 240 times to LSVM and 30,520 times to LSTM. The binarized image is then divided into groups, where each groups are converted to binary number, in order to reduce the number of comparison done in runtime process. The binary numbers are then converted to string. The test data is evaluated by converting to string and measuring similarity between hyperplanes using Levenshtein algorithm, which is a robust dynamic string comparing algorithm. This technique reduces runtime and enables the proposed algorithm to become 27% faster than LSVM, and 90% faster than LSTM.
MPEG과 VCEG은 차세대 비디오 부호화 표준 기술 개발를 위한 JVET(Joint Video Exploration Team)을 구성하여 현재 비디오 표준화인 HEVC 대비 높은 부호화 효율을 목표로 연구를 진행하며 CfP(Call for Proposal) 단계를 진행 중이다. JVET의 공통 플랫폼인 JEM(Joint Exploration Test Model)은 HEVC의 quad-tree 기반 블록 분할 구조를 대신하여 더 많은 유연성을 제공하는 QTBT(Quad-tree plus binary-tree)가 적용되었다. QTBT는 화면 내 부호화 효율을 높이기 위한 하나의 방법으로 휘도와 색차 신호에 대해 분할된 블록 구조를 지원한다. 이러한 방법은 채널 간 블록 분할 모양이 동일하거나 비슷한 경우에 중복되는 블록 분할 신호가 발생할 수 있는 단점이 있다. 따라서 본 논문에서는 화면 내 부호화에서 채널 간 유사도 비교를 이용하여 적응형 색차 블록 방법을 제안한다. 제안한 방법의 실험 결과로 JEM 6.0과 비교하여 CfE(Call for Evidence) 영상에서 평균 0.28%의 Y BD-rate 감소와 함께 평균 124.5%의 부호화 복잡도 증가를 확인하였다.
임계값 결정은 변화유무만을 판단하는 무감독변화탐지에 있어 매우 중요한 과정으로 인식되고 있다. 본 논문은 향후 수요 증가가 기대되는 원격탐사 데이터 중 하나인 초분광영상을 이용한 새로운 무감독변화탐지 기법을 제안하고 있다. 다중시기의 화소간 유사도 측정을 통해 도출된 결과값을 일정 간격으로 평균하여 그래프를 생성하고, 최대거리 기법을 적용하여 변화유무 정보를 추출하기 위한 임계값을 결정하였다. 참조자료를 취득할 수 있는 두 가지 의사영상을 통해 기대최대화 기법, 교점방법, Otsu 기법과 결과를 비교하여 성능을 평가하였으며, 이를 토대로 다중시기의 Hyperion 영상에 각 기법을 적용하여 변화탐지 결과를 확인하였다. 제안기법은 기존의 임계값 결정 기법과 비슷하거나 높은 정확도를 보였으며, 간단하게 적용할 수 있는 장점이 있어 향후 초분광영상을 이용한 무감독변화탐지에 효과적으로 사용될 수 있을 것으로 기대된다.
본 논문에서는 바이너리 프로그램의 정적인 구조를 표현하는 제어 흐름 그래프를 비교하는 방법을 제안한다. 제어 흐름 그래프를 비교하기 위해서 기본 블록에 포함된 프로그램의 명령어 및 구문 정보를 비교한 후 기본 블록 사이의 유사한 정도를 측정한다. 또한, 에지 확장을 통해 기본 블록들 간의 제어 흐름을 표현하는 그래프 에지의 유사성을 함께 반영한다. 각 기본 블록 사이의 유사도 결과를 기반으로 기본 블록을 서로 매칭하고, 기본 블록 사이의 매칭 정보를 이용해서 전체 제어 흐름 그래프의 유사도를 측정한다. 본 논문에서 제안한 방법은 자바 프로그램으로부터 추출한 제어 흐름 그래프를 대상으로 제어 흐름 구조의 유사성에 따라 두 가지 기준으로 실험을 수행하였다. 그리고, 성능을 평가하기 위해서 기존의 구조적 비교 방법을 함께 실험하였다. 실험 결과로부터 에지 확장 방법은 서로 다른 프로그램에 대해 충분한 변별력을 가지고 있음을 확인할 수 있다. 프로그램 비교에 좀 더 많은 시간이 소요되지만, 구조가 유사한 프로그램에 대한 매칭 능력에서 기존의 구조적 비교 방법에 비해 우수한 결과를 보였다. 제어 흐름 그래프는 프로그램의 분석에 다양하게 활용될 수 있으며, 제어 흐름 그래프의 비교 방법은 프로그램의 유사성 비교를 통한 코드의 최적화, 유사 코드 검출, 코드의 도용 탐지 등 다양한 분야에서 응용될 수 있을 것이라 기대된다.
최근 소프트웨어 제품의 복잡성 증가로 오픈소스 소프트웨어를 적극 활용하는 경우가 많아지고 있다. 이는 개발 기간 단축에 도움을 주지만, 동시에 사용된 오픈소스 소프트웨어간의 서로 다른 개발 생명 주기(SDLC)가 전체 제품의 버전 최신화를 어렵게 하기도 한다. 이로 인해 사용된 오픈소스 소프트웨어의 알려진 취약점에 대한 패치가 공개되었음에도 불구하고, 패치를 신속히 적용하지 못해 공개 취약점의 위협에 노출되는 경우가 많다. 특정 장치가 이런 위협에 노출되어있는지를 신속히 판별하기 위한 공개 취약점 식별 기법에 관한 여러 연구 들이수행되어 왔는데, 기존 기법들은 취약점이 발생하는 함수의 크기가 작거나 인라인되는 경우 취약점 발견에 어려움을 겪는 경우가 많다. 본 연구는 이런 문제를 해결하기 위해 함수 호출 관계 및 데이터 흐름 분석을 통한 바이너리 코드 유사성 비교 도구인 FunRank를 개발하였다. 개발된 도구는 기존 연구들과 달리, 컴파일러에 의해 인라인 될 수 있는 크기가 작은 함수의 코드를 식별해야만 발견할 수 있는 공개취약점 또한 찾아낼 수 있도록 설계되어 있다. 본 연구에서 인위적으로 만들어진 벤치마크 및 실제 펌웨어로부터 추출된 바이너리를 이용해 실험한 결과, FunRank가 바이너리 코드 내에서 인라인 된 함수를 잘 찾아내고, 이를 통해 공개된 취약점의 존재성을 빠르게 확인하는 데에 도움을 줌을 보일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.