• Title/Summary/Keyword: Binary Cycle

Search Result 105, Processing Time 0.028 seconds

ALMA observations of a proto-binary system, IRAS 04191+1523

  • Lee, Jeong-Eun;Lee, Seokho;Yoon, Sung-Yong;Dunham, Michael;Evans, Neal;Choi, Minho;Tatematsu, Ken;Bergin, Edwin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.46.4-47
    • /
    • 2016
  • About 50% of stars reside in binary or multiple systems. However, the formation mechanism of the multiplicity is poorly understood. Theoretical studies suggest two main mechanisms for the multiplicity: turbulent fragmentation and disk fragmentation. We can testify which mechanism is more plausible by measuring the separation between companions or the alignment of stellar spins. Here we present our ALMA Cycle 2 observational results of a proto-binary system, IRAS 04191+1523, which consists of two Class I sources. We detected disks around both Class I sources, which are located in a common dense filamentary structure traced by $C^{18}O$ J=2-1. Two protostellar disks are separated by ~900 AU and their rotational axes are almost perpendicular, which strongly support that this binary system formed by the turbulent fragmentation.

  • PDF

Hardware Implementation of HEVC CABAC Binary Arithmetic Encoder

  • Pham, Duyen Hai;Moon, Jeonhak;Kim, Doohwan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.630-635
    • /
    • 2014
  • In this paper, hardware architecture of BAE (binary arithmetic encoder) was proposed for HEVC (high efficiency video coding) CABAC (context-based adaptive binary arithmetic coding) encoder. It can encode each bin in a single cycle. It consists of controller, regular encoding engine, bypass encoding engine, and termination engine. The proposed BAE was designed in Verilog HDL, and it was implemented in 180 nm technology. Its operating speed, gate count, and power consumption are 180 MHz, 3,690 gates, and 2.88 mW, respectively.

Performance Evaluation of X-MAC/BEB Protocol for Wireless Sensor Networks

  • Ullah, Ayaz;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.857-869
    • /
    • 2016
  • This paper proposes an X-MAC/BEB protocol that runs a binary exponential backoff (BEB) algorithm on top of an X-MAC protocol to save more energy by reducing collision, especially in densely populated wireless sensor networks (WSNs). X-MAC, a lightweight asynchronous duty cycle medium access control (MAC) protocol, was introduced for spending less energy than its predecessor, B-MAC. One of X-MAC 's conspicuous technique is a mechanism to allow senders to promptly send their data when their receivers wake up. X-MAC, however, has no mechanism to deal with sudden traffic fluctuations that often occur whenever closely located nodes simultaneously diffuse their sense data. To precisely evaluate the impact of the BEB algorithm on X-MAC, this paper builds an analytical model of X-MAC/BEB that integrates the BEB model with the X-MAC model. The analytical and simulation results confirmed that X-MAC/BEB outperformed X-MAC in terms of throughput, delay, and energy consumption, especially in congested WSNs.

다수 표면실장기계를 포함하는 PCB조립라인의 작업분배 알고리즘 설계 II

  • 김진철;이성한;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1237-1240
    • /
    • 1996
  • This paper proposes a heuristic algorithm for performing the line balancing of PCB assembly fine including multiple surface mounters efficiently. We consider a PCB assembly line including the multiple surface mounters arranged serially as a target system. We assume that the number of heads of surface mounters can be changed. Also, the conveyor is assumed to move at a constant speed and have no buffer. Considering the minimum number of machines required for the desired production rate is a discrete nonincreasing function which is inversely proportional to the cycle time, we propose an optimization algorithm for line balancing by using the binary search method. Also we propose an head-changing algorithm. The algorithms are validated through the computer simulation.

  • PDF

Poling Quality Evaluation of Periodically Poled Lithium Niobate Using Diffraction Method

  • Pandiyan, Krishnamoorthy;Kang, Yeon-Suk;Lim, Hwan-Hong;Kim, Byeong-Joo;Prakash, Om;Cha, Myoung-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • We demonstrated a simple way of evaluating the duty cycle error in periodically polled lithium niobate(PPLN) based on the method of binary phase diffraction grating. To demonstrate this method, -Z face etched PPLN of desired periods were fabricated by the standard electric field poling technique. The etched PPLN was considered as a surface-relief binary phase grating. The diffraction patterns were recorded for different spatial locations along the length of the sample. The experimentally observed efficiencies of the diffracted orders were compared with the theoretically calculated values to estimate the duty cycle error.

The Hardware Design of CABAC for High Performance H.264 Encoder (고성능 H.264 인코더를 위한 CABAC 하드웨어 설계)

  • Myoung, Je-Jin;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.771-777
    • /
    • 2012
  • This paper proposes a binary arithmetic encoder of CABAC using a Common Operation Unit including the three modes. The binary arithmetic encoder performing arithmetic encoding and renormalizer can be simply implemented into a hardware architecture since the COU is used regardless of the modes. The proposed binary arithmetic encoder of CABAC includes Context RAM, Context Updater, Common Operation Unit and Bit-Gen. The architecture consists of 4-stage pipeline operating one symbol for each clock cycle. The area of proposed binary arithmetic encoder of CABAC is reduced up to 47%, the performance of proposed binary arithmetic encoder of CABAC is 19% higher than the previous architecture.

MDA-SMAC: An Energy-Efficient Improved SMAC Protocol for Wireless Sensor Networks

  • Xu, Donghong;Wang, Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4754-4773
    • /
    • 2018
  • In sensor medium access control (SMAC) protocol, sensor nodes can only access the channel in the scheduling and listening period. However, this fixed working method may generate data latency and high conflict. To solve those problems, scheduling duty in the original SMAC protocol is divided into multiple small scheduling duties (micro duty MD). By applying different micro-dispersed contention channel, sensor nodes can reduce the collision probability of the data and thereby save energy. Based on the given micro-duty, this paper presents an adaptive duty cycle (DC) and back-off algorithm, aiming at detecting the fixed duty cycle in SMAC protocol. According to the given buffer queue length, sensor nodes dynamically change the duty cycle. In the context of low duty cycle and low flow, fair binary exponential back-off (F-BEB) algorithm is applied to reduce data latency. In the context of high duty cycle and high flow, capture avoidance binary exponential back-off (CA-BEB) algorithm is used to further reduce the conflict probability for saving energy consumption. Based on the above two contexts, we propose an improved SMAC protocol, micro duty adaptive SMAC protocol (MDA-SMAC). Comparing the performance between MDA-SMAC protocol and SMAC protocol on the NS-2 simulation platform, the results show that, MDA-SMAC protocol performs better in terms of energy consumption, latency and effective throughput than SMAC protocol, especially in the condition of more crowded network traffic and more sensor nodes.

VARIATION IN THE PERIOD OF THE SYSTEM GO CYG

  • ELKHATEEB M. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • We present a period analysis of the well known $\beta$ Lyrae type eclipsing binary GO Cyg $(P= 0^d .7177)$. Several new times of minimum light, recorded photoelectrically, have been gathered. Analysis of all available eclipse timings of GO Cyg has confirmed a significant period increase with rate of $2.52 {\times} 10^{-10}$ day / cycle, also new period has been estimated. New linear and quadratic ephemerides have been calculated for the system.

Two-Color Photometry of V448 Monocerotis

  • Nha, Il-Seong
    • Journal of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.16-18
    • /
    • 1974
  • Photolectric observations with B and V filters of the eclipsing binary system V448 Monocerotis are presented. The light curves, which cover 30% of the light cycle, show the variability of this system.

  • PDF

Oven Temperature Control by Integral - Cycle Binary Rate Modulation Technique

  • Tipsuwanporn, V.;Piyarat, W.;Chochai, N.;Jamjan, K.;Paraken, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.278-280
    • /
    • 1999
  • This paper proposes controlling of temperature in an oven by using 4 bits Integral - Cycle Binary Rate Modulation (IBRM) method and ac line with frequency 50 Hz. Microcontroller MCS-51 controls IBRM according to Proportional Integral controller (PI) function. Discrete signals are used in the system modeled by using Ziegler Nichols principle for analyzing the stability before designing the system. This procedure makes it easy to investigate system response. The system is implemented by 4 bits digital circuit which gives 320 patterns of ac signal fur controlling the generation of energy for 3,000 watts thermal coil every 20 ms of each cycle. We divide scan time (Ts$\sub$n/) in to 20 intervals, 1 ms interval is selected to generate 16 patterns IBRM. Because of this method gives the ripple lower than 2% it generates less noise fur system. Moreover, we can consider whole system from the time model of control procedure and IBRM algorithm at 40-200$^{\circ}C$ with ${\pm}$ 1$^{\circ}C$ error in the 1 cubic meter oven.

  • PDF