• Title/Summary/Keyword: Binary Code Optimization

Search Result 18, Processing Time 0.023 seconds

Prediction of Atomic Configuration in Binary Nanoparticles by Genetic Algorithm (유전알고리즘을 이용한 이원계 나노입자의 원자배열 예측)

  • Oh, Jung-Soo;Ryou, Won-Ryong;Lee, Seung-Cheol;Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.493-498
    • /
    • 2011
  • Optimal atomic configurations in a nanoparticle were predicted by genetic algorithm. A truncated octahedron with a fixed composition of 1 : 1 was investigated as a model system. A Python code for genetic algorithm linked with a molecular dynamics method was developed. Various operators were implemented to accelerate the optimization of atomic configuration for a given composition and a given morphology of a nanoparticle. The combination of random mix as a crossover operator and total_inversion as a mutation operator showed the most stable structure within the shortest calculation time. Pt-Ag core-shell structure was predicted as the most stable structure for a nanoparticle of approximately 4 nm in diameter. The calculation results in this study led to successful prediction of the atomic configuration of nanoparticle, the size of which is comparable to that of practical nanoparticls for the application to the nanocatalyst.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.

A Weight on Boolean Algebras for Cryptography and Error Correcting Codes (암호학 및 오류 수정 코드를 위한 부울 대수 가중치 연구)

  • Yon, Yong-Ho;Kang, An-Na
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.781-788
    • /
    • 2011
  • A sphere-packing problem is to find an arrangement of the spheres to fill as large area of the given space as possible, and covering problems are optimization problems which are dual problems to the packing problems. We generalize the concepts of the weight and the Hamming distance for a binary code to those of Boolean algebra. In this paper, we define a weight and a distance on a Boolean algebra and research some properties of the weight and the distance. Also, we prove the notions of the sphere-packing bound and the Gilbert-Varshamov bound on Boolean algebra.

Interference Analysis Among Waveforms and Modulation Methods of Concurrently Operated Pulse Doppler Radars (단일 플랫폼에서 동시 운용되는 펄스 도플러 레이다의 파형 및 변조 방식간의 간섭 분석)

  • Kim, Eun Hee;Ryu, Seong Hyun;Kim, Han Saeng;Lee, Ki Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • As the application field of radar is expanded and the bandwidth increases, the number of radar sensors operating at the same frequency is continuously increasing. In this paper, we propose a method of analyzing interference when two pulse doppler radars are operated at the same frequency with different waveform which are designed independently. In addition, we show that even for a previously designed LFM waveforms, the interference can be suppressed without affecting the performance by changing the sign of the frequency slope by increasing/decreasing, or by modulating the pulses by the different codes. The interference suppression by different slopes is more effective for similar waveform and the suppression by the codes increases as the number of pulses increases. We expect this result can be extended to the cases where multiple radars are operated at the same frequency.

Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1373-1392
    • /
    • 2015
  • Placing sensors at appropriate locations is an important task in the design of an efficient structural health monitoring (SHM) system for a large-scale civil structure. In this paper, a hybrid optimization algorithm called virus monkey algorithm (VMA) based on the virus theory of evolution is proposed to seek the optimal placement of sensors. Firstly, the dual-structure coding method is adopted instead of binary coding method to code the solution. Then, the VMA is designed to incorporate two populations, a monkey population and a virus population, enabling the horizontal propagation between the monkey and virus individuals and the vertical inheritance of monkey's position information from the previous to following position. Correspondingly, the monkey population in this paper is divided into the superior and inferior monkey populations, and the virus population is divided into the serious and slight virus populations. The serious virus is used to infect the inferior monkey to make it escape from the local optima, while the slight virus is adopted to infect the superior monkey to let it find a better result in the nearby area. This kind of novel virus infection operator enables the coevolution of monkey and virus populations. Finally, the effectiveness of the proposed VMA is demonstrated by designing the sensor network of the Canton Tower, the tallest TV Tower in China. Results show that innovations in the VMA proposed in this paper can improve the convergence of algorithm compared with the original monkey algorithm (MA).

An Effective Method for Comparing Control Flow Graphs through Edge Extension (에지 확장을 통한 제어 흐름 그래프의 효과적인 비교 방법)

  • Lim, Hyun-Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.8
    • /
    • pp.317-326
    • /
    • 2013
  • In this paper, we present an effective method for comparing control flow graphs which represent static structures of binary programs. To compare control flow graphs, we measure similarities by comparing instructions and syntactic information contained in basic blocks. In addition, we also consider similarities of edges, which represent control flows between basic blocks, by edge extension. Based on the comparison results of basic blocks and edges, we match most similar basic blocks in two control flow graphs, and then calculate the similarity between control flow graphs. We evaluate the proposed edge extension method in real world Java programs with respect to structural similarities of their control flow graphs. To compare the performance of the proposed method, we also performed experiments with a previous structural comparison for control flow graphs. From the experimental results, the proposed method is evaluated to have enough distinction ability between control flow graphs which have different structural characteristics. Although the method takes more time than previous method, it is evaluated to be more resilient than previous method in comparing control flow graphs which have similar structural characteristics. Control flow graph can be effectively used in program analysis and understanding, and the proposed method is expected to be applied to various areas, such as code optimization, detection of similar code, and detection of code plagiarism.