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요  약

Sphere-packing problem은 주어진 공간에 가능한 한 많은 구(sphere)를 채울 수 있는 배열을 찾는 문제이고

covering problem은 이에 쌍대적인 최적화의 문제로 코딩이론에 적용된다. 본 논문에서는 이진 코드이론에서의

가중치(weight)와 해밍거리(Hamming distance)에 대한 개념을 부울 대수(Boolean algebra)의 개념으로 일반화한

다. 부울 대수에서의 가중치와 이를 이용하여 거리함수를 정의하고, 이들의 기본적인 성질들을 밝힌다. 또한, 
부울 대수에서의 sphere-packing bound와 Gilbert-Varshamov bound의 정리를 증명한다.

Abstract

A sphere-packing problem is to find an arrangement of the spheres to fill as large area of the given space 
as possible, and covering problems are optimization problems which are dual problems to the packing problems. 
We generalize the concepts of the weight and the Hamming distance for a binary code to those of Boolean 
algebra. In this paper, we define a weight and a distance on a Boolean algebra and research some properties 
of the weight and the distance. Also, we prove the notions of the sphere-packing bound and the 
Gilbert-Varshamov bound on Boolean algebra.
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Ⅰ. INTRODUCTION

Coding theory has been studied for the effective use of 
the data, such as data compression, error correction, cryp-
tography and network transmission, in computer science.

A typical sphere-packing problem is to find an ar-
rangement of the spheres to fill as large area of the giv-
en space as possible, and covering problems are opti-

mization problems which are dual problems to the pack-
ing problems. Sphere-packing bounds are closely related 
to error-correcting code.

In coding theory, packing problems have investigated in 
order to find maximal codes with given minimum distance 
[1]-[3], and covering problems were examined in order to 
find codes with given covering radius. It is the aim to de-
termine the minimal cardinality of such a covering code 
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[4]-[7]. Improved sphere-packing bounds for binary code 
were introduced in [8],[9], and a improving 
Gilbert-Varshamov bound for -ary codes was studied in 
[10]. The general theory of code can be found in [11]-[13].

In section 2, we define a weight function on Boolean 
algebras and research basic properties of it, and in sec-
tion3, we define a distance on Boolean algebras using 
the weight function and research basic properties of the 
distance, and prove the similar notions with the 
sphere-packing bound and the Gilbert-Varshamov bound 
in coding theory.

Ⅱ. A WEIGHT FUNCTION ON BOOLEAN 

ALGEBRAS

Let   ≤ be a poset and let  ∈ . We say   
covers  , written by ⤙   or ⤚  , if     and 
 ≤     implies    .

Let   be a lattice with the bottom element 0. Then 
an element  in   is called an atom if ⤙ . If   
is a finite lattice, then for all ∈  with ≠  , there 
is an atom   such that ⤙ ≤  .

A Boolean algebra is an algebraic structure  
∨∧ ′   such that

(1)  ∨ ∧  is a distributive lattice,
(2) ∨    and ∧    for all ∈
(3) ∨′    and ∧′    for all ∈

Lemma 2.1. [14] Let   be a Boolean algebra and 
 ∈ . Then

(1) ′  and ′  
(2) ″  ,
(3) ∨′  ′∧′  and ∧′  ′∨′
(4) ∧′    if and only if  ≤ 
(5) ≤   if and only if ′≥ ′

If   is a finite Boolean algebra, then   has atoms 
and we will write   to denote the set of all atoms 

in 

Lemma 2.2. [14] Let   be a finite Boolean algebra. 
Then for each ∈ ,
 ∨∈  ≤ .

Lemma 2.3. [14] Let   be a finite Boolean algebra. 
Then the map    →    given by

  ∈   ≤   for each ∈
is an isomorphism with the inverse    of   given 

by      ∨  for each ∈ , where 
  is the power set of  .

Further discussion of the fundamentals of Boolean al-
gebra can be found in [14],[15].

Let   be a finite Boolean algebra and ∈  We 
will write  to denote the subset

∈  ≤ 
of   Then from Lemma 2.2 and 2.3, we have 

    ↓∩ ,

    ∨

for all ∈  where ↓  ∈   ≤ 

Lemma 2.4. Let   be a finite Boolean algebra. 
Then for any  ∈ , ≤   if and only if 
⊆ . In particular,     if and only if 
  .

Proof. Let ≤   Then ↓⊆↓  and hence 
  ↓∩ ⊆↓∩  

Conversely, if ⊆ , then  ∨ 
≤∨    It is clear that     if and only 
if    □

Lemma 2.5. Let   be a finite Boolean algebra and 
 ∈  Then the following are equivalent :

(1) ∩  
(2) ↓∩↓  
(3) ∧ 

Proof. ((1)⇒ (2)) Let ∩    It is 
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clear that ∈↓∩↓ . Suppose that there exists 
∈↓∩↓  such that ≠   Then there is an 
atom  such that ⤙ ≤   that is ∈
≠   Since  ≤ and  ≤   we have

⊆  and ⊆ 
from Lemma 2.4, and hence 

≠⊆∩

It is a contradiction. Hence↓∩↓  
((2)⇒ (3)) Let↓∩↓  . Since ∧≤
≤   and ∧≤   we have

∧∈↓∩↓  
Hence ∧  
((3)⇒ (1)) Let ∧    Suppose that ∩
≠  Then there is an atom   such that 
 ≤   and  ≤  , that is,    ≤ ∧ , and it 
is a contradiction. Hence ∩   . □

Definition 2.6. Let   be a finite Boolean algebra. 
Then for any  ∈ ,   and   are said to be 
disjoint if ∧  

Definition 2.7. Let   be a finite boolean algebra. 
Then the weight   on   is a map    →ℤ  
given by 

   

for each ∈  where    is the cardinality of a 
set  .

Lemma 2.8. Let   be a finite boolean algebra. Then
(1) ≥   for all ∈ ,
   in particular,     ⇔    
(2)     for all ∈ ,

(3)  ≤  ⇒ ≤  for any  ∈ .

Proof. It is clear from the definition of weight.   □

Proposition 2.9. Let   be a finite Boolean algebra 
and ∈  Then 

(1) ∨  ∩
(2) ∧  ∩

(3) ∪′  
(4) ∩′  

Proof. (1) Let  ∈ . Since  ≤ ∨  an 
≤ ∨ , we have 
⊆ ∨ and ⊆∨

by Lemma 2.4, Hence ∪⊆ ∨.
Conversely, let ∈∨  Then  is an atom 
with ≤ ∨ , and  

 ≤ ∧≤  and  ≤ ∧ ≤ 
If ∧    and ∧    then 
  ∧∨ ∧∨∧  

It is a contradiction. This implies that
∧≠  or ∧≠

Since  is an atom, ∧   or ∧    that 
is, ≤   or ≤   Hence ∈∪.

(2) Let  ∈ . Then it is clear that ∧ 
∩ since ∧ ≤   and ∧≤  .
Conversely, suppose that ∈∩  Then 
≤   and ≤  . It follows that ≤ ∧ . 
Hence ∈∧

(3) Let ∈ . Then it is clear that 
∪′⊆ 

To prove  ⊆∪′, suppose that ∈
  and ∉  Then ∧    Since  is 

an atom, ∧″ ∧    From Lemma 2.1(4), 
≤ ′ , that is, ∈′. Hence

 ⊆∪′
(4) Let ∈ . Then ∧′   . Hence

∩′  
from Lemma 2.5. □

Proposition 2.10. Let   be a finite Boolean algebra, 
  the weight on   and ∈  Then
  (1) ∨   ∧,
  (2) if   and   are disjoint in   then
     ∨ ,
  (3) ∧′   ∧.

Proof. (1) and (2) are trivial from Definition 2.7 and 
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Proposition 2.9.
  (3) Let  ∈ . Then 

  ∧∨′  ∧∨∧′,
∧∧∧′  ∧∧′ ∧  
From (2) of this proposition, we have

  ∧∨∧′
               ∧∧′.
Hence ∧′   ∧         □

Theorem 2.11. Let   be a finite Boolean algebra 
and ∈  Then
 (1) if ∈  and ∉ then ⤙ ∨,

 (2) if ⤙  , then there is a unique ∈  such  

    that ∉ and   ∨

Proof. (1) Let ∈  and ∉  Then 

∨ ∪ ∪

             ≠
and ∨≠  by Lemma 2.4, hence   ∨  
If ≤   ∨  then 
⊆⊆ ∨  ∪

by Lemma 2.4. Since ≠∨
    .

Hence    . It follows that ⤙ ∨.
  (2) Let ⤙  . Then   ∧′≤ ∧′  We 
will show that ∧′  is an atom. If ∧′   ,  
then we have
  ∧′∨ ∧′∨ ∨ 

and it is impossible, hence ∧′≠  that is, 
  ∧′  Suppose that  ≤   ∧′  for 
some ∈ . Then
≤ ∨≤ ∧′∨  ∧′∨

      ∧  
Since ⤙  , ∨    or ∨    If ∨
  , then we have 
∧′  ∧′∧ ∧′∧∨

          ∨∧′∧  ∨   .
It is impossible, hence ∨   . Since   ∧′
≤ ′  and  ≤ ∨     ≤ ∧′   It 
follows that    . Hence ∧′  is an atom with 

∧′≤ 
  Set   ∧′  Then ∉ since ∧ 
∧′∧    and ∨ ∨∧′   . 
To show that this atom   is unique, suppose that 
 ∈  and ∨   ∨  Then

∧′ ∨∧′  ∨∧′  ∧′ .
If ∧′   then we have 

  ∨  ∧′∨  ∨   ,
and it is impossible, hence ∧′≠  In the 
similar way, ∧′≠  Since  and   are atoms 
and since ∧′≤  and ∧′≤   

∧′   and ∧′  
This imply that   ∧′  ∧′   .       □

 In Theorem 2.11(2), if ⤙  , then the unique 
atom  satisfying  ∨  is ∧′ , and 
  ∧′∈′

Corollary 2.12. Let   be a finite Boolean algebra 
and   the weight on   Then for any ∈

⤙   ⇒     

Proof. From Theorem 2.11(2), there is ∈  such 

that ∉ and   ∨  it follows that 
  ∪  ∪  hence we 
have                          □

Ⅲ. A DISTANCE ON BOOLEAN ALGEBRA

Lemma 3.1. Let   be a boolean algebra. If we 
define a map    × →ℝ  by 

  ∧′∨′∧
for every  ∈ , then   satisfies the following :
  (1) ≥ 
  (2)     if and only if   
  (3)   
  (4) ≤   .

Proof. The proof of (1) and (3) is trivial. We need 
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prove (2) and (4).
  (2) It is trivial that     implies     
because ∧′  ′∧  ∧′   . Conversely, 
suppose that     Then 

   ∧′′∧
since ∧′  and ′∧  are disjoint. Hence we have

∧′    and ′∧ 
This implies that ∧′    and ′∧    from 
Lemma 2.8(1), and ≤   and  ≤   from 
Lemma 2.1(4). It follows that   
  (4) Let   ∈ . Since ∧′≤ ′  and ∧′  
≤  , we have
     ∧′  ∧′∧
            ∧′∧∨′
            ∧′∧∨∧′∧′ 
           ≤ ′∧∨∧′.
In the similar way, we have

  ′∧≤ ′∧∨∧′.
This implies that 
  ∧′∨′∧
    ≤ ∧′∨′∧∨∧′∨′∧
Hence we have 
    ∧′∨′∧
         ≤ ∧′∨′∧
               ∨∧′∨′∧
         ≤ ∧′∨′∧           
               ∧′∨′∧
           
by Lemma 2.8(3) and Proposition 2.10.          □

From Lemma 3.1, the map  is a metric on  , and 
 has the following property :

  ∧′′∧
since ∧′ ∧′∧  ∧′ ∧∧′   .
Let   be a finite Boolean algebra. If     , 

then   contains   elements, and if   is the set 
of all elements with weight   for each     

… , that is,   ∈   , then the 

set       … is a partition of  .

Proposition 3.2. Let   be a finite Boolean algebra. 
Then for all  ∈ ,

   ∧.

Proof. It is clear from Proposition 2.10(3).       □

Corollary 3.3. Let   be a finite Boolean algebra 
with    , and let ∈  and ∈  with 

 ≤   ≤   Then

  (1) if    is even, then  is even,

  (2) if    is odd, then  is odd,

  (3) if ∈  for any non-negative integer    

     with ≤   then  is even.

Proof. It follows immediately from the preceding 
Pro-position.                                  □

  Let   be a finite Boolean algebra. If  is a  
non-negative integer and ∈  then   is 
the set of all elements that has the distance   from 
  that is,    ∈     . 
  The sphere centered at   with radius  is defined 
by    ∈  ≤   Form the 

definition of sphere, we have   
  





Proposition 3.4. Let   be a finite Boolean algebra 
and  a positive integer and ∈  then  
is the set of all elements of the form :

∨ ,

where   ∈  such that  ≤  ,  ≤ ′  

and        .

Proof. Suppose that ∈. Then
  ∧∨′  ∧∨∧′

Let   ∧  and   ∧′  Then  ≤   

and  ≤ ′ , and we have

     ∧
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by Proposition 3.2. Since     

      .

This implies that       .

  Conversely, suppose that  ∈  such that 

≤ , ≤ ′  and     . 
Then we have
       ∧∨ ′  ∧′∧′
                      ″∧′∧′
                      ′∨ ′∧′
                      ″∧′
                      ∧′
and since ∧′    by Lemma 2.1(4),

     ∨ ∧′  ∧′∨∧′
                    ∨ 

Hence from Proposition 2.10(3), we have
  ∨ 

      ∨ ∧′∨ ′∧
       ∧′
        ∧ 

         

          

        
      ,
and it follows that ∨∈ .         □

Proposition 3.5. Let   be a finite Boolean algebra 
and   a positive integer. Then for any ∈  the 
following are equivalent :
  (1) ∈ ,
  (2) there are   atoms  …   such that    

       ∧′∧⋯∧′ ∨∨⋯∨ 
     where … ∈  and …  ∈    
     ′   for some ∈  … .

Proof.  ((1)⇒ (2)) Let ∈ . Then from 
Proposition 3.4, there are  ∈  such that 

  ∨ , and  ≤  ,  ≤ ′and

       .

From Lemma 2.2 and 2.4, 
  ∨⋯∨

with   ⋯⊆ , and 
  ∨⋯∨

with   ⋯⊆′  . If ⋯
⋯, then   ⋯  ⋯  
and      
  Let   ′∧⋯∧ ′ . Then we have

  ∨⋯∨∨∨⋯∨  ′∨
Since  and   are atoms, ∧″ ∧  
and by Lemma 2.1(4), ≤ ′  for each      

⋯   and     ⋯   This implies that 
 ∨⋯∨ ≤ ′

for each     ⋯   and hence
 ≤ ′∧⋯∧ ′   .

It follows that 
∧  ′∨ ∧  ∧   ,

hence   ∨  ∧∨  Since  

     , that is,      

and   .
  Set      for each     ⋯   Then 

    ∨⋯∨  and

  ∧′∧⋯∧′ ∨∨⋯∨ 
with … ∈  and …  ∈ ′  .
  ((2)⇒ (1)) Suppose that there are  atoms  

⋯   such that 

  ∧′∧⋯∧′ ∨∨⋯∨ 
with … ∈  and …  ∈′   
for some  ∈  … . Let   ∨⋯∨ 
and   ∨⋯∨ . Then

  ∧′∨ ,
where  ≤  ,  ≤ ′ ,   ,    . 
Since ∧′ ∧≤ ′∧∧′   , we have
       ∧′
             ∧
             
               ,
and since ∧≤ ∧′   , that is, ∧   ,
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       ∧  ∧∧′∨
              ∧∧′  ∧′ ,
hence we have 
       ∧  ∧′      
                  ∧
                  
                  .
From Proposition 3.2, we have 
  
     ∧
        
    
This implies that ∈ .                □

  From the Proposition 3.4, the elements in   
is characterized by  atoms in  .

Corollary 3.6. Let   be a finite Boolean algebra 
with    , and   a positive integer. Then for 
every ∈ , 

  (1)    ,

  (2)     
  





Proof. (1) It follows immediately from Proposition 
3.5, that is, we can make an element in   by 
joining   elements of  .
  (2) It follows immediately from

              
  



 .          □

  Let   be a finite Boolean algebra and ⊆   
We define the minimum distance of   as following:
    min  ∈ and ≠ 

and denote   for the set of all subsets of   with 
minimum distance , that is, 

  ⊆        .

Theorem 3.7. Let   be a finite Boolean algebra 
with      and   a positive integer. Then 

  ≤


  




 

for any ∈ , where  ⌊ ⌋ .

Proof.  Let ∈ and  ∈  with ≠   If 
∈  ∩    then we have
≤   ≤    ≤   ,

and it is impossible because the minimum distance of 
  is . Hence   ∩    . It follows 
that 


∈
      

∈ 
   ≤   .

since 
∈
    ⊂  . This implies that 

     ≤   .

Hence   ≤

  




 

 from Corollary 3.6(2).   □

  Theorem 3.7 gives the optimal number of 
codewords (elements in  ) for error-correcting. In 
general,   is called a perfect  -error-correcting 
code in coding theory if  satisfies the equality in 
Theorem 3.7.

Theorem 3.8. Let   be a finite Boolean algebra 
    and   a positive integer. If ∈  such 
that    max    ∈, then

  ≥


  

 


 

.

Proof. We need show that     ∈  
cover  . Suppose that ∈  and ∉  
for all ∈  Then  ≥   for all ∈ . It 
follows that  ≥   for all  ∈∪, 
hence  ∪       . This is a con-
tradiction to maximality of    in  . So we have

             ≤  
∈ 
  

               ≤ 
∈
   

                 
  

 

.

Hence we have 

  

 


 

≤   .       □
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Ⅳ. CONCLUSION

We defined a weight and a distance on Boolean alge-
bras as a generalization of binary code, and represented 
basic properties of them. Also using the concepts of the 
weight and the distance, we proved the sphere-packing 
bound and the sphere-covering bound of Boolean 
algebra. We are sure that these concepts and notions can 
be used to the different boolean algebras with the binary 
codes, especially cryptographic algorithms, error correc-
tion codes, and network transmission for enhancing their 
quality and effectiveness.
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