• Title/Summary/Keyword: Binary Alloy

Search Result 131, Processing Time 0.024 seconds

A Calorimetric Study on the Martensitic Transformation Characteristics with Chemical Composition and Thermal Cycling in Cu-Zr Binary Alloys (Cu-Zr이원계 합금에서 화학조성 및 열싸이클링에 따른 마르텐사이트변태 특성의 열분석학적 연구)

  • Jang, W.Y.;van Humbeeck, J.;Jo, M.S.;Lee, J.H.;Lee, Y.S.;Kang, J.W.;Gwak, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 1998
  • The effects of chemical composition and thermal cycling on the martensitic transformation characteristics in Cu-rich, equiatomic and Zr-rich CuZr binary alloys have been studied by calorimetry. Only martensite could be indentified in equiatomic $Cu_{49.9}Zr_{50.1}$ alloy, while $Cu_{10}Zr_7$ and $CuZr_2$ intermetallic compounds as well as martensite were formed by rapid cooling from the melts in Cu-rich $Cu_{52.2}Zr_{47.5}$ alloy and Zr-rich $Cu_{48.4}Zr_{51.6}$ alloy, respectively. The $M_s$ temperature of $Cu_{49.9}Zr_{50.1}$ was $156^{\circ}C$ but those of $Cu_{52.5}Zr_{47.5}$ and $Cu_{48.4}Zr_{51.6}$ alloys, being $109^{\circ}C$ and $138^{\circ}C$, were lower than that of equiatomic $Cu_{49.9}Zr_{50.1}$ alloy. In all the alloys, the $M_s$ temperature has fallen but the $A_s$ temperature has risen, resulting in widening of the transformation hysteresis with thermal cycling. The anomalous characteristics in the transformation temperature are due to the presence of the intermetallic compounds i.e. $Cu_{10}Zr_7$ and $CuZr_2$ formed by an eutectoid reaction during thermal cycling in the temperature range between $-100^{\circ}C$ < $T_c$ < $400^{\circ}C$.

  • PDF

The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy (중간가공열처리한 AI-Li계 합금의 고온변형거동)

  • Yoo, C.Y.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures (금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화)

  • Oh, Seung-Hwan;Lee, Young-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.42 no.5
    • /
    • pp.273-281
    • /
    • 2022
  • In order to understand the solidification behavior and microstructural evolution of the Al-Cu-Si ternary eutectic alloy system, changes of the microstructure of the Al-Cu-Si ternary eutectic alloy with different cooling rates were investigated. When the mold preheating temperature is 500℃, primary Si and Al2Cu dendrites are observed, with (α-Al+Al2Cu) binary eutectic and needle-shaped Si subsequently observed. In addition, even when the mold preheating temperature is 300℃, primary Si and Al2Cu dendrites can be observed, and both (α-Al+Al2Cu+Si) areas observed and areas not observed earlier appear. When the mold preheating temperature is 150℃, bimodal structures of the binary eutectic (α-Al+Al2Cu) and ternary eutectic (α-Al+Al2Cu+Si) are observed. When the preheating temperature of the mold is changed to 500℃, 300℃, and 150℃, the greatest change is in the Si phase, and upon reaching the critical cooling rate, the ternary eutectic of (α-Al+Al2Cu+Si) forms. If the growth of the Si phase is suppressed upon the formation of (α-Al+Al2Cu+Si), the growth of both Al and Cu is also suppressed by a cooperative growth mechanism. As a result of analyzing the Al-27wt%Cu-5wt%Si ternary eutectic alloy with a different alloy design simulation programs, it was confirmed that different results arose depending on the program. A computer simulation of the alloy design is a useful tool to reduce the trial and error process in alloy design, but this effort must be accompanied by a task that increases reliability and allows a comparison to microstructural results derived through actual casting.

Solidification Behaviour of Binary Organic Eutectics and 1:2 Addition Compounds

  • Rai, U. S.;George, Santhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.193-197
    • /
    • 1994
  • Due to possibility of visual observation of phase transformations and processes during solidification, the transparent binary alloy models are important in materials and metallurgical sciences. As such, phase diagram, linear velocity of crystallization, microstructure and spectral behaviour of binary organic systems of benzidine with resorcinol and catechol involving formation of addition compound with congruent melting point have been studied. While their phase diagrams show the formation of two eutectics and a 1:2 (B:RC, B:CT) addition compound in each case, the crystallization data obey the Hillig-Turnbull equation. The microstructural investigations give the characteristic morphology of the eutectics and the addition compounds, the spectral studies suggest intermolecular hydrogen bonding between two components forming the molecular complex.

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Influence of neutron irradiation and ageing on behavior of SAV-1 reactor alloy

  • Tsay, K.V.;Rofman, O.V.;Kudryashov, V.V.;Yarovchuk, A.V.;Maksimkin, O.P.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3398-3405
    • /
    • 2021
  • This study observed the effect of neutron irradiation and ageing on the microstructure, hardness, and corrosion resistance of SAV-1 (Al-Mg-Si) alloy. The investigated material was irradiated with neutrons to fluences of 1021-1026 n/m2 in the WWR-K research reactor and kept in dry storage. Long-term irradiation led to an increase in hardness of the alloy and a deterioration of pitting corrosion resistance. Post-irradiation ageing for 1 h at 100-300 ℃ resulted in a decrease in microhardness of the irradiated SAV-1. The effect of post-irradiation ageing on pitting corrosion was made clear through the formation of Guinier-Preston zones and secondary precipitates in the Al matrix. Ageing at 250 ℃ corresponded to the development of stable microstructure and the highest corrosion resistance for the irradiated samples. Mg2Si, Si, and needle-shaped β" precipitates were formed in SAV-1 alloy that was irradiated with low fluences. β" and clusters of rod-shaped B-type precipitates were observed in highly irradiated samples. The precipitates were similar to those seen in non-irradiated pseudo-binary Al-Mg2Si alloys with Si excess.

Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying (기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측)

  • Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Effects of Sr Additions on the Interfacial Reaction Layers Formed between Liquid Al-Si-Cu Alloy and Cast Iron

  • Kyoung-Min Min;Je-Sik Shin;Jeong-Min Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.353-359
    • /
    • 2023
  • This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.

Wear properties of Al-Pb alloys produced by a forced stirring method (강제교반법으로 제조된 Al-Pb계 베어링 합금의 마모특성)

  • 임화영;허무영;임대순
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.70-77
    • /
    • 1992
  • Al-Pb-Si bearing alloys were produced by a forced stirring method and a rapid solidification process to study wear properties of bearing alloys. A homogeneous distribution of Pb particles in Al matrix could be obtained by means of the forced stirring and the rapid cooling during the casting. The wear properties of bearing alloys were tested by a pin-on-disc wear tester. The change in microstructure according to the alloy manufacturing variables was observed by the backscattered electron images. Al-Pb and Al-Si binary alloys showed a transition from mild to severe wear. The transition was not found in Al-Pb-Si ternary alloys. It could be concluded that the lubricatioin effect of Pb and the strengthening effect of Si in the ternary alloys enhanced the bearing properties. A Al-25%Pb-13%Si alloy showed the lowest coefficient of friction in this experiment. It indicated that the optimum concentration of alloy was 25% Pb and 13% Si when the forced stirring of melt and water-cooled-copper-mold solidification were adopted.

A Study on the Solidified Structures of Al-Pb Alloy Solidified by Rapid Cooling (급냉응고 시킨 Al-Pb 합금의 응고조직에 관한 연구)

  • Kim, Yong-Kil;Kim, Tong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.12-18
    • /
    • 1982
  • The present investigation was made to abtain a fine distribution of Pb Particles in AL - Pb binary alloys , which have a broad miscibility gap and large specific difference, by means of rapid Cooling of the molten alloys. Al-2.4% Pb, Al-5.5wt% Pb and Al-8.0wt % Pb alloy were used. The rapid cooling operation was performed by free falling of homogeneous liquid Al-Ph alloys into the water-cooled copper mold, and thermal analysis was made. Microstructures were observed, and variations of size and number of Pb particles were analysicle analyzer. By the result of examination with the varing cooling rates 100 to $210^{\circ}C/sec$ fine distributions of Pb particles were obtained with high cooling rate. Under same cooling condition, the best rapid cooling effect was recognized in Al-5.5wt% Pb alloy.

  • PDF