• Title/Summary/Keyword: Bimodal distribution

Search Result 247, Processing Time 0.032 seconds

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices (1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발)

  • Park, Ho-Jin;Kim, Do-Yeob;Kim, Goon-Sik;Kim, Jong-Ho;Ryu, H.H.;Jeon, Min-Hyon;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.390-395
    • /
    • 2007
  • We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of $1.3\;{\mu}m$ with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as $1.3\;{\mu}m$ optical-fiber communication.

Seasonal Abundance of Culicoides (Diptera: Ceratopogonidae) Collected by Mosquito Magnet$^{(R)}$ in Northern Gyeonggi-do (Province), Korea

  • Kim, Heung Chul;Bellis, Glenn A.;Kim, Myung-Soon;Klein, Terry A.;Chong, Sung-Tae;Park, Jee-Yong
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • Biting midges (Culicoides: Ceratopogonidae) were collected by Mosquito Magnet$^{(R)}$ traps at the Neutral Nations Supervisory Commission (NNSC) camp and Daeseongdong village inside the demilitarized zone (DMZ) and near the military demarcation line (MDL) separating North and South Korea and at Warrior Base (US Army training site) and Tongilchon 3 km south of the DMZ in northern Gyeonggi Province, Republic of Korea (ROK), from May-October 2010-2012, to determine their seasonal distributions. A total of 18,647 Culicoides females (18,399; 98.7%) and males (248; 1.3%) comprising 16 species were collected. Overall, the most commonly collected species was Culicoides nipponensis (42.9%), followed by C. erairai (29.2%), C. punctatus (20.3%), C. arakawae (3.3%), C. pallidulus (1.8%), and C. circumscriptus (1.4%), while the remaining 10 species accounted for only 1.1% of all Culicoides spp. collected. The seasonal distribution of C. nipponensis was bimodal, with high numbers collected during May-June and again during September. C. erairai was more frequently collected during June-July, followed by sharply decreased populations from August-October. C. punctatus was collected in low numbers from May-September with high numbers collected during October. C. erairai was predominantly collected from the NNSC camp (85.1% of all C. erairai collected) located adjacent to the MDL at Panmunjeom in the northernmost part of Gyeonggi-do (Province), while other sites yielded low numbers of specimens.

A Study on Polyamide-6 Sintering and Effect by $CO_2$ Laser ($CO_2$ Laser에 의한 Polyamide-6 소결과 그 영향에 관한 연구)

  • Bae S.W.;Kim D.S.;Ahn Y.J.;Kim H.I.;Choi K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-198
    • /
    • 2006
  • In the solid freeform fabrication (SFF) system using selective laser sintering (SLS), polyamide-12 powder is currently recognized as general material. In this study, some kinds of polyamide-6 powders with different shape and particlesize were fabricated to investigate the formability, the microstructure and mechanical properties. Also, to develop a more elaborate and rapid system, this study employs a new SLS device with a 3-axis dynamic focusing scanner system instead of the existing fe lens used in commercial SLS. Polyamide-6 powders having the average size of 100 m were treated thermally in order to keep the spherical symmetry in shape. These polyamide-6 powders were mixed with polyamide-12 powders having the average size of 50 m to give the bimodal distribution of size. These mixed powders showed the better fabrication in the selective laser sintering process because the smaller particles of polyamide-11 played an important role in the compact packing of powders by filling the void space between the large particles of polyamide-6. Also, Experiments have performed to evaluate the effect of a scanning path and sintering parameters by fabricating the various 3D objects.

  • PDF

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Polymerization of Environmentally Friendly Acrylic Resin by Non-Aqueous Dispersion (비수계 분산중합을 이용한 환경친화적 아크릴수지의 합성)

  • Oh, Dae-Geun;Kim, Jeong-Ho
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.208-214
    • /
    • 2007
  • Environmentally-friendly acrylic resin particles having the diameter between $0.1\;and\;1\;{\mu}m$ were prepared using non-aqueous dispersion (NAD) polymerization technique. The first step is to prepare the stabilizer and the next step is the NAD polymerization by dropping an acrylic monomer to stabilizer dispersed in organic media. To obtain a NAD resin with proper level of viscosity, it fumed out that stabilizers having sufficient viscosity such as 1000 cP need to be used, for which the stepwise feeding of monomer and initiator was necessary. It was necessary to put proper amount of stabilizer, but no more increase in viscosity was observed when more than that amount of stabilizer was added. Choice of proper monomers considering solubility parameter was essential to avoid the bimodal particle size distribution in the NAD resin product.

  • PDF

Optimization of Slurry Preparation Process for Soft Magnetic Green Sheet (연자성 복합체 후막용 슬러리 제조공정의 최적화)

  • Oh, Sea Moon;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.792-796
    • /
    • 2015
  • With high integration of electronic components, power inductors are also miniaturized. Recently, thick film processes for small size power inductors were developed and commercialized. However, the thick film process to prepare soft magnetic green sheets was not reported enough. In this study, we used Fe-Si magnetic and CIP (carbonyl iron powders) as starting materials to lead to a bimodal particle size distribution in the sheet. We proposed a newly developed 'Modified slurry preparation process' to get well dispersed condition even at high solid contents. Using the new process, it was possible to prepare a well dispersed slurry over 70 vol% of solid. BYK-103 was better than BYK-111 as dispersant in this slurry and the optimum amount was 0.6 wt%. The optimized slurry was formed into a sheet by tape casting process and then the sheet was laminated. We conformed that small size powder, large size powder, and epoxy resin were well dispersed in the green sheet.

The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851

  • Han, Sang-Il;Lee, Young-Wook;Joo, Seok-Joo;Sohn, Sangmo Tony;Yoon, Suk-Jin;Kim, Hak-Sub;Lee, Jae-Woo
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.30.2-30.2
    • /
    • 2009
  • There is a growing body of evidence for the presence of multiple stellar populations in some globular clusters, including NGC 1851. For most of these peculiar globular clusters, however, the evidence for the multiple red giant-branches (RGBs) having different heavy elemental abundances as observed in $\omega$ Centauri is hitherto lacking, although spreads in some lighter elements are reported. It is therefore not clear whether they also share the suggested dwarf galaxy origin of $\omega$ Cen or not. Here we show from the CTIO 4m UVI photometry of the globular cluster NGC 1851 that its RGB is clearly split into two in the U - I color. The two distinct RGB populations are also clearly separated in the abundance of heavy elements as traced by Calcium, suggesting that the type II supernovae enrichment is also responsible, in addition to the pollutions of lighter elements by intermediate mass asymptotic giant branch stars or fast-rotating massive stars. The RGB split, however, is not shown in the V - I color, as indicated by previous observations. Our stellar population models show that this and the presence of bimodal horizontal-branch distribution in NGC 1851 can be naturally reproduced if the metal-rich second generation stars are also enhanced in helium.

  • PDF

Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery (상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성)

  • Jin, En Mei;Lee, Ga-Eul;Na, Byuong-Ki;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.163-169
    • /
    • 2017
  • In order to investigate the electrochemical properties and the particle size effect of $LiNi_{1-x-y}Co_xAl_yO_2$ (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately $5m{\mu}$. NCA#2 consisted of particles with bimodal size distribution of approximately $5m{\mu}$ and $11m{\mu}$. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.