• Title/Summary/Keyword: Bike-road

Search Result 48, Processing Time 0.035 seconds

Evaluation of the Performance on Coating on Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 코팅에 따른 성능 평가)

  • Lee, Chang-Ho;Lee, Seung-Woo;Kim, Seong-Kil
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, usage bicycle is encouraged to reduce fuel consumption and air pollution. For this purpose, bike road constructions are actively performed. However, types of pavement used in bike roads have high construction cost and performance comparing the required capacity of bike roads. Thus, an economical pavement type for construction is necessary for the effective development. Roller compacted concrete pavement have good requirements, such as easy construction and low costs, high structural performance of hydration and internal communication aggregation on compaction for bicycle roads. However, the pool landscape surface and resistance to deicer damage cannot be applied to the construction of bicycle roads. Thus, for solving this problem used coating which may have effect of improving the landscape and environmental resistance. To examine this effect were evaluated performance of roller compacted concrete pavement on the coating.

Vibration Analysis at Bike Frame Fork (자전거 프레임 포크에서의 진동 해석)

  • Cho, Jae Ung;Han, Moon Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • This study investigates structural and vibration analyses for three types of bike frame fork models. As long as the maximum equivalent stresses of these models are lower than the yield stress, the three models are considered to be safe structurally. Type 3, with a maximum equivalent stress of 169.23 MPa, has the lowest stress among the three models and the strongest strength. Types 1, 2 and 3 have natural frequencies lower than 270 Hz. Type 3, with a critical frequency of 118 Hz, has the best durability under vibration among the three models. In order to decrease the vibration transmitted to a bike rider riding on a rough road, the impact due to vibration can be relieved by selecting a Type 3 model from among the three models. The results of this study can be effectively utilized for the design of a bike frame fork as this allows the anticipation and prevention of damage caused by durability issues.

Estimating Potential Impact of Bike Lane Implementation (Case study of Seoul Metropolitan City) (자전거전용차로 설치에 따른 기대효과 추정 (서울시 사례를 중심으로))

  • Sin, Hui-Cheol;Hwang, Gi-Yeon;Jo, Yong-Hak;Jeong, Seong-Yeop
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.97-106
    • /
    • 2010
  • Environmental issues resulting from climate change and energy crises have become global issues, and cycling has gained greater popularity for sustainable transportation. Though many cities are trying to build bicycle roads, it is not easy to implement bicycle roads because there is little available space for bicycle facilities. Therefore, road diets have become more popular in Korea. However, there has been no intensive research to date of their impacts. The purpose of this research is to evaluate the effects of road diets and construction of bike lanes. Every benefit, including energy benefit, environmental benefit, and health benefit is considered, while only time savings benefit has been considered in previous studies. The benefit analysis for the Seoul metropolitan area as a case study shows that road diets have a (1) time saving benefit for only five percent of the mode share and (2) enough total benefit even if bicycle mode share is less than two percent.

Study on Capacity Analysis Methodology for Riverside Bike-Exclusive Road (하천변 자전거도로의 용량 분석 방법론 연구)

  • Jeon, Woo Hoon;Lee, Young-Ihn;Yang, Inchul
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.69-76
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to propose a capacity analysis methodology for riverside bike-exclusive roads. METHODS : Three steps were performed to develop a methodology to estimate bikeway capacity. First, we reviewed previous studies on the vehicle-road capacity analysis and proposed their applicability to bikeways. Second, two assumptions were made based on the traffic flow characteristics of bikeways: (1) the capacitated state in bikeways occur within a bicycle platoon, and (2) a bicycle platoon consists of more than three bicycles running in close proximity. In addition, it is assumed that the mean time headway of a bicycle platoon represents the characteristics of the platoon. The normality of the mean-time headway of a bicycle platoon calculated using the central limit theorem leads to the development of a method that estimates the riverside bikeway capacity using data collected from two different riverside bike-exclusive roads (Han-river and Anyangcheon). We used a location-fixed video camera to record videos of running bicycles and wrote a special-purpose software program to code the time-headway data from the videos. RESULTS : Time headways from 189 bicycle platoons were analyzed. The estimated mean-time headway of the capacitated bicycle flow is 1.01 s, from which the capacity of the bikeway is found to be 3578 vehicles/h. CONCLUSIONS : The proposed method that estimates bikeway capacity could be applicable to the analysis of short-range congested area rather than planning the number of lanes. In other words, it determines the sections that are temporarily highly congested and proposes appropriate strategies to mitigate the congestion.

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

A Study on Efficient Management of Bicycle Traffic Flow at Four-Legged Intersections (4지 신호교차로에서 효율적 자전거 교통류 처리방안 연구)

  • Mok, Sueng Joon;Kim, Eung Cheol;Heo, Hee Bum
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • PURPOSES: This study aims to suggest a proper left-turn treatment method for the bicycle traffic flow at four-legged intersections. METHODS: Four types of crossing methods are proposed and analyzed : (1) indirect left turn, (2) direct left turn, (3) direct left turn on a Bike Box, and (4) direct left turn on bike left turn lane. The VISSIM simulation tests were conducted based on forty-eight operation scenarios prepared by varying vehicle and bicycle traffic volumes. RESULTS : The results from the four-legged signalized intersections suggest that (1) the indirect left turn is appropriate when vehicle demand is high, (2) the direct left turn is efficient on most traffic situation but the safety is a concern, (3) the direct left turn on a Bike Box is appropriate when bicycle demand is high while vehicle demand is not, and (4) the direct left turn on a bike left turn lane is appropriate when both vehicle and bicycle demand are low. CONCLUSIONS : The direct left turn of bicycle provides more efficiency than the indirect left turn at the four-legged intersections but to apply the methods and to study more, advanced evaluation methods, related law, and insurance programs are needed.

A Study on Construction Methods of Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 시공 방안 연구)

  • Lee, Chang-Ho;Kim, Young-Kyu;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • Usage of bicycle has been supported the universal reduction of energy consumption and $CO_2$. For the same purpose, new constructions for long length bike roads are planned in Korea. Recently, laboratory tests of physical properties and resistance against environmental loading about optimum mix design of roller compacted concrete, that have advantages of high structural performance by cement hydration and aggregate interlocking, simple construction procedure and low construction cost, are performed for the effective construction of new bike roads. However, properties of roller compacted concrete had different results between laboratory and field tests since it had different compaction method. Also, construction method of roller compacted concrete are not defined for the application of bike roads since it had different demand performance such as thin pavement thickness, low strength and etc with road pavements. Thus, in this experimental research was launched to evaluate the core properties, visual inspection, compaction ratio, water content, thickness reduction rate of roller compaction, skid resistance and roughness by experimental construction about variable mix proportion and compaction method based on laboratory test results. And construction method of roller compacted concrete pavement were suggested for the application of bike roads.