• 제목/요약/키워드: Bigram Algorithm

검색결과 7건 처리시간 0.02초

Prediction of Protein-Protein Interactions from Sequences using a Correlation Matrix of the Physicochemical Properties of Amino Acids

  • Kopoin, Charlemagne N'Diffon;Atiampo, Armand Kodjo;N'Guessan, Behou Gerard;Babri, Michel
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.41-47
    • /
    • 2021
  • Detection of protein-protein interactions (PPIs) remains essential for the development of therapies against diseases. Experimental studies to detect PPI are longer and more expensive. Today, with the availability of PPI data, several computer models for predicting PPIs have been proposed. One of the big challenges in this task is feature extraction. The relevance of the information extracted by some extraction techniques remains limited. In this work, we first propose an extraction method based on correlation relationships between the physicochemical properties of amino acids. The proposed method uses a correlation matrix obtained from the hydrophobicity and hydrophilicity properties that it then integrates in the calculation of the bigram. Then, we use the SVM algorithm to detect the presence of an interaction between 2 given proteins. Experimental results show that the proposed method obtains better performances compared to the approaches in the literature. It obtains performances of 94.75% in accuracy, 95.12% in precision and 96% in sensitivity on human HPRD protein data.

대용량 한국어 연속음성인식 시스템 개발 (On the Development of a Large-Vocabulary Continuous Speech Recognition System for the Korean Language)

  • 최인정;권오욱;박종렬;박용규;김도영;정호영;은종관
    • 한국음향학회지
    • /
    • 제14권5호
    • /
    • pp.44-50
    • /
    • 1995
  • 본 논문에서는 연속분포 HMM을 이용한 대용량 한국어 연속음성인식 시스템에 관하여 기술한다. 인식 시스템의 성능을 개선하기 위하여 음성 모델링 단위의 선정, 단어간 모델링, 탐색 알고리듬, 문법에 관하여 연구하였다. 기본 인식단위로 트라이존을 사용하며 학습성을 개선하고 기능어에서의 에러 발생을 줄이기 위하여 일반화된 트라이폰과 function word-de-pendent phone을 사용한다. 단어 사이에는 묵음 모델과 null transition을 사용하여 선택적으로 묵음을 추가하였다. 언어모델로는 단어 클래스에 근거한 word pair 문법과 bigram 모델이 이용된다. 또한 지식 정보들을 효율적으로 활용할 수 있도록 N개의 후보 문장들을 탐색할 수 있는 알고리듬을 구현하였다. 후처리기에서는 word triple문법을 사용하여 N개의 최적 문장을 재정렬하여 최종적인 인식 문장을 결정하며, 마지막으로 후치사와 관련된 사소한 에러들을 수정한다. 3천단어의 연속음성 데이타베이스에 대한 인식실험에서, 후처리로 word triple 문법을 사용하여 $93.1\%$의 단어 인식률과 $73.8\%$의 문장 인식률을 얻었다.

  • PDF

모바일 앱 트렌드를 고려한 2단계 군집화 방법 (Two-Phase Clustering Method Considering Mobile App Trends)

  • 허정만;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.17-23
    • /
    • 2015
  • 본 논문에서는 단어 군집을 사용하여 모바일 앱을 군집화하는 방법을 제안한다. 모바일 앱 트렌드의 빠른 변화를 고려하여, 제안하는 방법은 미리 정의된 분류체계를 사용하지 않고, 모바일 앱 집합에 군집화 기술을 적용하여 의미적으로 유사한 모바일 앱을 묶는다. 짧은 모바일 앱 소개 글의 자료 부족 문제를 완화하기 위해서, 각 단어에 대해 unigram 뿐만 아니라, bigram, trigram, 단어 군집 정보를 추가적으로 확보하여 활용한다. 모바일 앱을 전체적으로 정확하게 군집화하기 위해서, 제안하는 방법은 단어 군집을 활용하여 모바일 앱 군집의 크기가 지나치게 작거나 크지 않도록 관리한다. 실험결과 제안하는 방법은 단어 군집을 활용하여 전체 정확도를 57.48%에서 79.66%로 22.18% 개선시켰다.

한국어 음성인식 플랫폼의 설계 (Design of a Korean Speech Recognition Platform)

  • 권오욱;김회린;유창동;김봉완;이용주
    • 대한음성학회지:말소리
    • /
    • 제51호
    • /
    • pp.151-165
    • /
    • 2004
  • For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.

  • PDF

바이그램이 문서범주화 성능에 미치는 영향에 관한 연구 (A Study on the Effectiveness of Bigrams in Text Categorization)

  • 이찬도;최준영
    • Journal of Information Technology Applications and Management
    • /
    • 제12권2호
    • /
    • pp.15-27
    • /
    • 2005
  • Text categorization systems generally use single words (unigrams) as features. A deceptively simple algorithm for improving text categorization is investigated here, an idea previously shown not to work. It is to identify useful word pairs (bigrams) made up of adjacent unigrams. The bigrams it found, while small in numbers, can substantially raise the quality of feature sets. The algorithm was tested on two pre-classified datasets, Reuters-21578 for English and Korea-web for Korean. The results show that the algorithm was successful in extracting high quality bigrams and increased the quality of overall features. To find out the role of bigrams, we trained the Na$\"{i}$ve Bayes classifiers using both unigrams and bigrams as features. The results show that recall values were higher than those of unigrams alone. Break-even points and F1 values improved in most documents, especially when documents were classified along the large classes. In Reuters-21578 break-even points increased by 2.1%, with the highest at 18.8%, and F1 improved by 1.5%, with the highest at 3.2%. In Korea-web break-even points increased by 1.0%, with the highest at 4.5%, and F1 improved by 0.4%, with the highest at 4.2%. We can conclude that text classification using unigrams and bigrams together is more efficient than using only unigrams.

  • PDF

A Semi-supervised Learning of HMM to Build a POS Tagger for a Low Resourced Language

  • Pattnaik, Sagarika;Nayak, Ajit Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • 제18권4호
    • /
    • pp.207-215
    • /
    • 2020
  • Part of speech (POS) tagging is an indispensable part of major NLP models. Its progress can be perceived on number of languages around the globe especially with respect to European languages. But considering Indian Languages, it has not got a major breakthrough due lack of supporting tools and resources. Particularly for Odia language it has not marked its dominancy yet. With a motive to make the language Odia fit into different NLP operations, this paper makes an attempt to develop a POS tagger for the said language on a HMM (Hidden Markov Model) platform. The tagger judiciously considers bigram HMM with dynamic Viterbi algorithm to give an output annotated text with maximum accuracy. The model is experimented on a corpus belonging to tourism domain accounting to a size of approximately 0.2 million tokens. With the proportion of training and testing as 3:1, the proposed model exhibits satisfactory result irrespective of limited training size.

Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구 (A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.30-39
    • /
    • 2003
  • 본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.

  • PDF