Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Thus, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'B'. According to the analytic results, the proposed big data analysis algorithm found both expected and unexpected changes in sales volume depending on the characteristics of the fashion goods.
Missing value replacement is one of the big issues in data analysis. If you ignore the occurrence of the missing value and proceed with the analysis, a bias can occur and give incorrect results for the estimate. In this paper, we need to find and apply an appropriate alternative to missing data from weather data. Through this, we attempted to clarify and compare the simulations for various situations using existing methods such as MICE and MissForest based on R and time series-based models. When comparing these results with each variable, it was determined that the kalman filter of the auto arima model using the ImputeTS package and the MissForest model gave good results in the weather data.
Drop-out issue is one of the challenges of cyber university. There are about 130,000 students enrolled in cyber universities, but the dropout rate is also very high. To lower the dropout rate, cyber universities invest heavily in learning analytics. Some cyber universities analyze the possibility of dropout and actively support students who are more likely to drop out. The purpose of this paper is to identify the learning data affecting the dropout prediction index. As a result of the analysis, it is confirmed that number of lessons(progress), credits, achievement and leave of absence have a significant effect on dropout rate. It is necessary to increase the accuracy of the prediction model through post-test on the student dropout prediction index.
In the 100-year history of Korean films, Korean films have grown to more than 100 million viewers every year since 2012, and their total sales are estimated at 1 trillion. It is assumed that the influence on the popularity of Korean movies is related to 2012, when 60% of smartphone penetration rate and 30 million subscribers exceeded. As a result, before and after 2012, changes in movie boxing factor variables were needed, and the prediction model trained as a new independent variable was applied to actual data.
Journal of Korea Society of Industrial Information Systems
/
v.21
no.3
/
pp.13-19
/
2016
Spark, an in-memory big-data processing framework is popular to use for real-time processing workload. Spark can store all intermediate data in the cluster memory so that Spark can minimize I/O access. However, when the resident memory of workload is larger that the physical memory amount of the cluster, the total performance can drop dramatically. In this paper, we analyse the factors of bottleneck on PageRank Application that needs many memory through experiment, and cluster the Spark with Tachyon File System for using memory to solve the factor of bottleneck and then we improve the performance about 18%.
Journal of Information Technology Applications and Management
/
v.24
no.4
/
pp.57-69
/
2017
Due to the development of technology even in learning and education area, many studies have begun to make a new attempts to research by using SNS, breaking away from traditional learning methods. However, the limitations of these studies are restricted only to the use of wireless Internet and writing on Web sites. This study aims to conduct a research on English learning activities that utilize various technologies such as Bigdata, Facebook, Social Network Services (SNS) and English applications. In addition, this study looks into how these modern technologies can be integrated in the classrooms and which activities can be applied in the English classroom. This research is to suggest effective English learning methods through a thorough investigation on the effectivity of various technologies based on the Web 2.0 such as Flickr, blogs, MySpace, and online discussion board within the context of the English learning. To verify the effect of the study, the subjects are divided into experimental and control group. The experiment is proceeded with pre- and post-test. The experimental group is designed to verify the effects using SNS tools such as Facebook, Bigdata, and Online Massive Learning. A survey is conducted to determine the preference of utilizing social networking sites and to analyze the effects in class. The result is that the average scores for experimental group have improved more than the average of control group. The comparison of pre and post-test of the experimental group shows that the significance of the higher and median group was statistically significant at the p<0.01.
Proceedings of the Korea Technology Innovation Society Conference
/
2017.11a
/
pp.969-988
/
2017
4차 산업혁명에 대한 국가적 관심이 높아짐에 따라 ICT산업 분야의 연구개발(R&D)는 앞으로의 국가 성장에 핵심적인 역할을 할 가능성이 크다. 우리나라의 경우도 빠르게 변화하는 ICT 산업에 대응하기 위해, 국가차원에서는 중장기 전략을 수립하고 있으며, 민간차원에서는 관련 인력풀(pool)을 늘리는 등 다각화된 대처를 하고 있다. 하지만 미국과 중국 등 선진국들의 기술수준과 가격 경쟁력을 결코 무시할 수 없어, 우리나라의 ICT산업은 낙관할 수만은 없는 상황이다. 그러므로 지금은 오히려 우리나라 ICT산업에 대한 명확한 진단을 통해 효율적이고 효과적으로 기술기회와 R&D기회를 발굴하는 것이 보다 실효성 있는 정책 수립에 도움을 줄 수 있다. 본 논문에서는 한국과학기술정보연구원(KISTI)에서 개발한 교역활동 프로파일 분석 시스템을 통해 ICT산업에 관련된 상품들 전체를 거시적인 관점에서 확인함으로써 우리나라의 ICT산업 전반을 진단하고 분석하고자 한다. 이로 인해, 증거기반(evidence-based)의 과학적인 방법으로 연구개발 기회를 파악하여 효율적이고 효과적인 정책수립에 기여하고자 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.323-325
/
2016
Computing loud arrival times were, important data Clouding and, without being limited to the device, may process the information. Recently, work environment and improved access to Cloud and Mobile, this decision has been made to take effect immediately. However, when such important decisions of the government, the security is required. In this paper, we study the network access and control in IoT, Cloud, Bigdata, Smartwork System applied to Mobile. Study the authentication, authorization, and security for each security level Level of Service to connect to the DB information. Research of this paper will be used as the basis for the information processing and decision-making system design and construction of public institutions and agencies as important information for the protection Smartwork System.
Kim, Seung-Hyun;Park, Jooseok;Park, Jea-Hong;Kim, Inhyun
The Journal of Bigdata
/
v.1
no.1
/
pp.23-32
/
2016
With the rapid development of information technology, we can manage not only structured data but also unstructured data. Big data environments drive new business values. This study examines the effect of analytic resources to business performance under big data environments. Recent worldwide reports showed empirical performance results of big data applications. Compared to these reports, we attempt to analyze resources of big data applications to companies in Korea. This study results in current status of big data use in Korea. and will help to develop a maturity model of big data applications.
Recently, predicting personality with the help of smartphone usage becomes very interesting and attention grabbing topic in the field of research. At present there are some approaches towards detecting a user's personality which uses the smartphones usage data, such as call detail records (CDRs), the usage of short message services (SMSs) and the usage of social networking services application. In this paper, we focus on the assessing the correlation between MBTI based user personality and the smartphone usage data. We used $Na{\ddot{i}}ve$ Bayes and SVM classifier for classifying user personalities by extracting some features from smartphone usage data. From analysis it is observed that, among all extracted features facebook usage log working as the best feature for classification of introverts and extraverts; and SVM classifier works well as compared to $Na{\ddot{i}}ve$ Bayes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.