• 제목/요약/키워드: BigData Platform

검색결과 516건 처리시간 0.022초

Blockchain Technology and Application

  • Lee, Sae Bom;Park, Arum;Song, Jaemin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.89-97
    • /
    • 2021
  • 블록체인은 네트워크상에서 기록된 데이터들이 하나의 블록 단위로 수집되어 저장되며 앞뒤로 연결되어 저장되도록 고안되었고, 그 형태가 블록들이 연결되어있는 모습과 비슷하므로 블록체인이라 불리게 되었다. 많은 기업이 국내외적으로 블록체인 기반 서비스를 대중화하기 위해 노력하고 있으며, 다양한 산업에서 블록체인이 활용되고 있다. 본 연구는 블록체인의 기술적 특징을 소개하고 블록체인을 활용한 응용 서비스들을 다룬다. 블록체인의 아키텍처와 핵심기술 5가지를 소개하고 결제서비스와 블록체인 서비스 네트워크, 블록체인 부동산 플랫폼, 신원확인, 암호화폐, 다이아몬드 유통경로 추적, 블로그 정보 기록에서 활용되고 있는 블록체인 응용 서비스들을 소개하고자 한다. 블록체인의 이해를 높이고 향후 블록체인 연구 및 서비스 개발에 유용성을 제공할 것으로 기대된다.

유튜브 실시간 방송 시청자의 지속시청 및 유료후원 의도에 영향을 미치는 요인: S-O-R 프레임워크를 기반으로 (Factors Influencing the Continuous Watching and Paid Sponsorship Intentions of YouTube Real-Time Broadcast Viewers: Based on the S-O-R Framework)

  • 권지윤;양선욱;양성병
    • 지식경영연구
    • /
    • 제23권3호
    • /
    • pp.285-311
    • /
    • 2022
  • 본 연구에서는 S-O-R 프레임워크를 기반으로 개인에 대한 자극(유튜브 채널의 영상 특성, 유튜버 특성, 실시간 방송 특성)이 어떻게 유기체(지각된 유용성, 지각된 즐거움, 사회적 존재감)를 형성하고, 이것이 시청자 반응(지속시청의도, 유료후원의도)에 영향을 미치는지를 유튜브 실시간 방송 환경에서 검증해 보고자 한다. 이를 위해 연구모형 및 가설을 구성하였고, 유튜브 플랫폼의 실시간 방송 채널 서비스 이용자를 대상으로 수집한 369부의 설문자료를 분석하였다. 분석결과, 일부 영상 특성, 유튜버 특성, 실시간 방송 특성이 시청자의 지각된 유용성, 지각된 즐거움, 사회적 존재감에, 더 나아가 지속시청의도, 유료후원의도에 유의한 영향을 미치는 것을 확인하였다. 결론에서 연구결과의 이론적 및 실무적 시사점을 논의하였다.

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 (A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis )

  • 김기연
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.71-86
    • /
    • 2023
  • 본 연구의 목적은 빅데이터 분석을 활용하여 메타버스에 관한 한국과 중국 사회의 공중 인식 특성에 관한 차이를 탐색적으로 비교하는 것이다. COVID-19 팬데믹의 영향, 기술적 발전, Z세대 및 알파 세대와 같은 새로운 소비자 기반 확대 등의 환경적 영향으로 메타버스에 관한 국제 사회의 관심이 집중되면서 관련 학술연구도 2021년부터 본격화되고 있다. 특히, 한국과 중국은 메타버스 산업을 선도하는 주요 국가로 급부상했다. 메타버스에 관한 빅데이터 언급량이 급증한 시점에서 양국에서 발생한 빅데이터를 활용하여 사회 인식의 차별성을 발견하는 것은 시의성 있는 연구문제이다. 분석기법은 텍스트마이닝 분석으로 정제 데이터의 단어빈도, N-gram, TF-IDF 분석을 수행하여 핵심 단어의 중요도를 파악하고, 시맨틱 네트워크의 밀도 및 중심성 분석을 통해 단어 간의 연결 강도와 의미적 연관성을 살펴보고자 한다. 데이터 분석은 Python 3.9 아나콘다 데이터 사이언스 플랫폼 3과 Textom 6 버전을 활용하였고, 시맨틱 네트워크 분석과 구조적 등위성(CONCOR) 분석을 위해 UCINET 6.759 프로그램으로 시각화 분석을 수행하였다. 분석 결과, 데이터를 유사성이 있는 단어 그룹으로서 각 4개씩의 블록을 도출하였다. 이 블록들은 메타버스에 관한 양국의 사회적 인식 유형을 각각 반영하는 관점들로 이해할 수 있다. 메타버스에 관한 연구들은 증가하고 있으나, 아직 비교문화 관점에서 국가나 다문화 간 비교연구 접근의 연구는 거의 수행되지 않았다. 이 시점에서 본 연구는 선행연구로서 후속 연구들에 이론적 근거와 의미 있는 인사이트를 제공할 수 있을 것으로 기대한다.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

바이오센싱 융합 빅데이터 컴퓨팅 아키텍처 (Bio-Sensing Convergence Big Data Computing Architecture)

  • 고명숙;이태규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권2호
    • /
    • pp.43-50
    • /
    • 2018
  • 생체정보 컴퓨팅은 생체신호 센서와 컴퓨터 정보처리를 융합한 정보시스템에 기초하여 컴퓨팅시스템 뿐만 아니라 빅데이터 시스템에 크게 영향을 미치고 있다. 이러한 생체정보는 지금까지의 텍스트, 이미지, 동영상 등의 전통적인 데이터 형식과는 달리 생체신호의 의미를 부여하는 값은 텍스트 기반으로 표현되고, 중요한 이벤트 순간은 이미지 형식으로 저장하며, 시계열 분석을 통한 데이터 변화 예측 및 분석을 위해서는 동영상 형식 등 비정형데이터를 포함하는 복합적인 데이터 형식을 구성한다. 이러한 복합적인 데이터 구성은 개별 생체정보 응용서비스에서 요구하는 데이터의 특징에 따라 텍스트, 이미지, 영상 형식 등으로 각각 분리되어 요청되거나, 상황에 따라 복잡 데이터 형식을 동시에 요구할 수 있다. 기존 생체정보 컴퓨팅 시스템들은 전통적인 컴퓨팅 구성요소, 컴퓨팅 구조, 데이터 처리 방법 등에 의존하므로 데이터 처리성능, 전송능력, 저장효율성, 시스템안전성 등의 측면에서 많은 비효율성을 내포하고 있다. 본 연구에서는 생체정보 처리 컴퓨팅을 효과적으로 지원하는 생체정보 빅데이터 플랫폼을 구축하기 위해 개선된 바이오센싱 융합 빅데이터 컴퓨팅 아키텍처를 제안한다. 제안 아키텍처는 생체신호관련 데이터의 저장 및 전송 효율성, 컴퓨팅 성능, 시스템 안정성 등을 효과적으로 지원하며, 향후 생체정보 컴퓨팅에 최적화된 시스템 구현 및 생체정보 서비스 구축을 위한 기반을 제공할 수 있다.

IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템 (Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments)

  • 송진수;김수진;신용태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.277-284
    • /
    • 2021
  • 최근 스마트 홈 환경은 무선 정보통신 기술과 융합을 통해서 다양한 데이터를 수집·통합·활용하는 플랫폼이 될 것으로 전망되고 있으며 실제로 스마트 홈 내부에는 다양한 센서를 탑재한 스마트 디바이스 수가 점점 증가하고 있다. 증가된 스마트 디바이스 수만큼 처리해야하는 데이터의 양도 증가하고 있으며 이를 효과적으로 처리하기 위해 빅데이터 처리 시스템이 활발하게 도입되고 있다. 그러나 기존 빅데이터 처리 시스템은 분산 노드에 할당되기 전 모든 요청이 클러스터 드라이버로 향하기 때문에 동시에 많은 요청이 발생하는 경우 분할 작업을 관리하는 클러스터 드라이버에 병목현상이 발생하고, 이는 네트워크를 공유하는 클러스터 전체의 성능감소로 이어진다. 특히 작은 데이터 처리를 지속해서 요청하는 스마트 홈 디바이스에서 지연율이 더 크게 나타난다. 이에 본 논문에서는 동시에 다수의 센서에서 요청이 발생하는 스마트 홈 환경에서 효과적인 데이터 처리를 위한 Apriori 기반 빅데이터 시스템을 설계하였다. 제안하는 시스템의 성능평가 결과에 따르면, 데이터 처리 시간은 기존 시스템에 비해 최소 19.2%에서 최대 38.6% 단축됐다. 이러한 결과가 발생한 이유는 측정되는 데이터의 형태와 관련이 있다. 스마트 홈 환경은 수집되는 데이터의 양은 방대하나 각 데이터의 용량은 작기 때문에 캐시 서버의 사용이 데이터 처리에 큰 역할을 하며, Apriori 알고리즘을 통한 연관도 분석으로 사용자의 행동 습관과 연관도가 높은 센서 데이터를 캐시에 저장하기 때문에 캐시 서버의 활용률이 매우 높다.

온라인 드론방제 관리 정보 플랫폼 개발 (Development of online drone control management information platform)

  • 임진택;이상범
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.193-198
    • /
    • 2021
  • 최근 4차 산업에 대한 관심으로 농업 분야의 벼농사에서 농민의 방제에 대한 요구수준이 증가하고 농업용 방제 드론의 관심과 활용이 증가하고 있다. 따라서 고농도의 농약을 살포하는 농업용 방제 드론 제품의 다양화와 드론 국가자격증 취득으로 인한 방제사의 증가로 인하여 드론 산업 분야에서 농업 분야가 급성장하고 있다. 세부 사업으로 농약 관리, 방제사 관리, 정밀살포, 방제 작업 물량 분류, 정산, 토양관리, 병충해 예찰 및 감시 등으로 방대한 빅데이터를 구축하고 데이터를 처리하기 위한 효과적인 플랫폼을 요구하고 있다. 그러나 데이터 분석알고리즘, 영상 분석 알고리즘, 생육 관리 알고리즘, AI 알고리즘 등 이를 통합하고 빅데이터를 처리하기 위한 모델과 프로그램 개발에 대한 국내외 연구는 미흡한 실정이다. 본 논문에서는 농업 분야에서의 관리자와 농민 요구도를 만족하고 드론을 활용한 농업용 드론방제 프로세서를 기반으로 정밀 AI 방제를 실현화시키기 위하여 온라인 드론 방제 관리 정보 플랫폼을 제안하고 실증 실험을 통하여 종합 관리 시스템 개발의 토대를 제시하였다.

FAIR 원칙 기반 메타데이터 평가 프레임워크 (FAIR Principle-Based Metadata Assessment Framework)

  • 박진효;김성희;윤주상
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권12호
    • /
    • pp.461-468
    • /
    • 2022
  • 최근 빅데이터 산업의 발전으로 디지털 플랫폼에서 데이터 활용 서비스를 제공하는 사례가 증가하고 있다. 이와 관련해 데이터 관련 분야에서 (메타)데이터 품질, 서비스, 기능 등의 평가에 적용할 수 있는 FAIR 원칙을 데이터 품질 평가에 적용하여 활용하는 연구가 진행되고 있다. 특히, 유럽 오픈 데이터 포털에서는 FAIR 원칙 기반의 평가 모델을 적용하여 이를 기준으로 데이터 성숙도 평가를 시행하고 그 결과를 매년 보고서로 공개하고 있다. 이에 반해 공공데이터 포털에서는 메타데이터를 기반으로 한 데이터 성숙도 평가를 시행하고 있지 않다. 따라서 본 논문에서는 유럽 오픈 데이터 포털에서 데이터 성숙도 평가를 위해 사용되고 있는 FAIR 원칙을 국내 여러 공공데이터 포털 및 데이터 거래를 위해 구축된 빅데이터 플랫폼에 데이터 성숙도 평가를 위한 새로운 모델 제안하고 평가를 시행한다. 제안한 성숙도 평가 모델은 공공데이터 포털 데이터셋 품질을 평가하는 모델이다.

정형 비정형 빅데이터의 융합분석을 위한 소비 트랜드 플랫폼 개발 (Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data)

  • 김성현;장석호;이상원
    • 디지털융복합연구
    • /
    • 제15권6호
    • /
    • pp.133-143
    • /
    • 2017
  • 데이터는 금융업에서 가장 중요한 자산으로 평균 71%의 금융기관이 데이터 분석으로 경쟁우위를 창출하고 있다. 특히, 금융업 중 카드 업종에서는 전체 고객의 소비행위 패턴 및 선호 트랜드 분석에 의한 가맹점 정보, 경기 변동 상황, 상권정보 제공 서비스 개발에 빅데이터가 폭 넓게 활용되고 있지만 데이터의 융복합을 통한 새로운 가치 창출은 미흡한 편이다. 본 연구는 소셜 데이터와 BC 카드 매출데이터의 융합 분석한 신용카드 회사의 '소비 트랜드 분석 및 예측' 사례를 다룬다. BC카드는 소셜 데이터를 활용한 트랜드 프로파일링 작업과 카드 및 소셜 데이터를 연계하는 알고리즘 개발 및 분석 내용 시각화 시스템을 개발하였다. 성과 검증을 위해 '식스포켓' 관련 트랜드를 분석하고 마케팅을 시행해 본 결과 40~100%이상의 마케팅 승수 증대 효과를 거두었다. 본 연구는 그동안 개별적으로 이루어져 오던 정형, 비정형데이터 분석을 융합하여 분석하는 방법론과 사례를 창출한 의의가 있으며 이는 앞으로 카드 업종 뿐만 아니라 타 업종에도 변화하는 트랜드에 유용하게 대응할 수 있는 시사점을 제공할 것이다.