• 제목/요약/키워드: BigData Analysis

Search Result 3,419, Processing Time 0.034 seconds

Implementation of a Personalized Restaurant Recommendation System for The Mobility Handicapped (교통약자를 위한 맞춤형 식당 추천시스템 구현)

  • Lee, Jin-Ju;Park, So-Yeon;Kim, Seo-Yun;Lee, Jeong-Eun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.187-196
    • /
    • 2021
  • The mobility handicapped are representative socially vulnerable people who account for a high percentage of our society. Due to the recent development of technology, personalized welfare technologies for the socially vulnerable are being studied, but it is relatively insufficient compared to the general people. In this study, we intend to implement a personalized restaurant recommendation system for the mobility handicapped. To this end, a hybrid recommendation system was implemented by combining the data of special transportation boarding and alighting history (7,153 cases) and information of Daegu Food restaurants (955 cases). In order to evaluate the effectiveness of the implemented recommendation system, we conducted performance comparisons with existing recommendation systems by prediction error rate and recommendation coverage. As a result of the analysis, the performance was higher than that of the existing recommendation system, and the possibility of a personalized restaurant recommendation system for the mobility handicapped was confirmed. In addition, we also confirmed the correlation in which similar restaurants are recommended in some types of the mobility handicapped. As a result of this study, it is judged that it will contribute to the use of restaurants with high satisfaction for the mobility handicapped, and the limitations of the study are also presented.

Designing a Employment Prediction Model Using Machine Learning: Focusing on D-University Graduates (머신러닝을 활용한 취업 예측 모델 설계: D대학교 졸업생을 중심으로)

  • Kim, Sungkook;Oh, Chang-Heon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.61-74
    • /
    • 2022
  • Recently, youth unemployment, especially the unemployment problem of university graduates, has emerged as a social problem. Unemployment of university graduates is both a pan-national issue and a university-level issue, and each university is making many efforts to increase the employment rate of graduates. In this study, we present a model that predicts employment availability of D-university graduates by utilizing Machine Learning. The variables used were analyzed using up to 138 personal information, admission information, bachelor's information, etc., but in order to reflect them in the future curriculum, only the data after admission works effectively, so by department / student. The proposal was limited to the recommended ability to improve the separate employment rate. In other words, since admission grades are indicators that cannot be improved due to individual efforts after enrollment, they were used to improve the degree of prediction of employment rate. In this research, we implemented a employment prediction model through analysis of the core ability of D-University, which reflects the university's philosophy, goals, human resources awards, etc., and machined the impact of the introduction of a new core ability prediction model on actual employment. Use learning to evaluate. Carried out. It is significant to establish a basis for improving the employment rate by applying the results of future research to the establishment of curriculums by department and guidance for student careers.

Learning Ability Prediction System for Developing Competence Based Curriculum: Focusing on the Case of D-University (역량중심 교육과정 개발을 위한 학업성취도 예측 시스템: D대학 사례를 중심으로)

  • Kim, Sungkook;Oh, Chang-Heon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Achievement at university is recognized in a comprehensive sense as the level of qualitative change and development that students have embodied as a result of their experience in university education. Therefore, the academic achievement of university students will be given meaning in cooperation with the historical and social demands for diverse human resources such as creativity, leadership, and global ability, but it is practically an indicator of the outcome of university education. Measurement of academic achievement by such credits involves many problems, but in particular, standardization of academic achievement by credits based on evaluation methods, contents, and university rankings is a very difficult problem. In this study, we present a model that uses machine learning techniques to predict whether or not academic achievement is excellent for D-University graduates. The variables used were analyzed using up to 96 personal information and bachelor's information such as graduation year, department number, department name, etc., but when establishing a future education course, only the data after enrollment works effectively. Therefore, the items to be analyzed are limited to the recommended ability to improve the academic achievement of the department/student. In this research, we implemented an academic achievement prediction model through analysis of core abilities that reflect the philosophy, goals, human resources image, and utilized machine learning to affect the impact of the introduction of the prediction model on academic achievement. We plan to apply the results of future research to the establishment of curriculum and student guidance conducted in the department to establish a basis for improving academic achievement.

Research on the Movie Reviews Regarded as Unsuccessful in Box Office Outcomes in Korea: Based on Big Data Posted on Naver Movie Portal

  • Jeon, Ho-Seong
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.3
    • /
    • pp.51-69
    • /
    • 2021
  • Purpose - Based on literature studies of movie reviews and movie ratings, this study raised two research questions on the contents of online word of mouth and the number of movie screens as mediator variables. Research question 1 wanted to figure out which topics of word groups had a positive or negative impact on movie ratings. Research question 2 tried to identify the role of the number of movie screens between movie ratings and box office outcomes. Design/methodology/approach - Through R program, this study collected about 82,000 movie reviews and movie ratings posted on Naver's movie website to examine the role of online word of mouths and movie screen counts in 10 movies that were considered commercially unsuccessful with fewer than 2 million viewers despite securing about 1,000 movie screens. To confirm research question 1, topic modeling, a text mining technique, was conducted on movie reviews. In addition, this study linked the movie ratings posted on Naver with information of KOBIS by date, to identify the research question 2. Findings - Through topic modeling, 5 topics were identified. Topics found in this study were largely organized into two groups, the content of the movie (topic 1, 2, 3) and the evaluation of the movie (topics 4, 5). When analyzing the relationship between movie reviews and movie ratings with 5 mediators identified in topic modeling to probe research question 1, the topic word groups related to topic 2, 3 and 5 appeared having a negative effect on the netizen's movie ratings. In addition, by connecting two secondary data by date, analysis for research question 2 was implemented. The outcomes showed that the causal relationship between movie ratings and audience numbers was mediated by the number of movie screens. Research implications or Originality - The results suggested that the information presented in text format was harder to quantify than the information provided in scores, but if content information could be digitalized through text mining techniques, it could become variable and be analyzed to identify causality with other variables. The outcomes in research question 2 showed that movie ratings had a direct impact on the number of viewers, but also had indirect effects through changes in the number of movie screens. An interesting point is that the direct effect of movie ratings on the number of viewers is found in most American films released in Korea.

A Study on the Application of Virtual Space Design Using the Blended Education Method - A La Carte Model Based on the Creation of Infographic - (블렌디드 교육방식을 활용한 가상공간 디자인 적용에 관한 연구 -알 라 카르테 모델 (A La Carte) 인포그래픽 가상공간 제작을 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.279-284
    • /
    • 2022
  • As a study of the blended learning method on design education through the blended learning method, I would like to propose that more advanced learner-led customized design education is possible. Understanding in face-to-face classes and advantages in non-face-to-face classes can be supplemented in an appropriate way in remote classes. Advanced artificial intelligence and big data technology can provide personalized and subdivided learning materials and effective learning methods tailored to learners' levels and interests based on quantified data in design classes. In this paper, it was proposed to maximize the efficiency of the class by applying a method that exceeds the limitations of time and space through the proposal of the A La Carte model (A La Carte). It is a remote class that can be heard anytime, anywhere, and it is also possible to bridge the educational quality and educational gap provided to students living in underprivileged areas. As the goal of fostering creative convergence-type future talents, it is changing with a rapid technological development speed. It is necessary to adapt to the change in learning methods in line with this. An analysis of the infographic virtual space design and construction process through the A La Carte model (A La Carte) proposal was presented. Rather than simply acquiring knowledge, it is expected that knowledge can be sorted, distinguished, learned, and easily reborn with its own knowledge.

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology (하수기반역학을 적용한 공공하수처리시설 역할 재정립)

  • Park Yoonkyung;Yun Sang-Lean;Yoon Younghan;Kim Reeho;Nishimura Fumitake;Sturat L. Simpson;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.

The Effect of Health and Environmental Message Framing on Consumer Attitude and WoM: Focused on Vegan Product (건강과 환경 메시지 프레이밍에 따른 소비자 태도와 구전에 미치는 영향: 비건 제품을 중심으로)

  • Park, Seoyoung;Lim, Boram
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.127-146
    • /
    • 2023
  • Recently, digital advertising has shifted towards delivering messages through short ads of less than 15 seconds, and on social media, ads need to convey the message within 5 seconds before consumers skip them. Although the length of advertisements has decreased, advancements in artificial intelligence algorithms and big data analysis have made it possible to deliver personalized messages that cater to consumers' interests. In this changing landscape, the importance of delivering tailored messages through short and efficient ads is increasing. In this study, we examined the effects of message framing as part of effective message delivery. Specifically, we examined the differences in the effects of two framings, "health" and "environment," for vegan products. The growing consumer interest in health and the environment has elevated the interest in vegan products, and the vegan market is expanding rapidly. Consumers purchase vegan products not only for personal health benefits but also due to their ethical responsibility towards the environment, which can be considered ethical consumption. Previous research has not shown the differences in the effects between health and environment message framings, and the research has been limited to vegan food products. This study investigates the differences in the effects of health and environment message framings using a dish soap product category. By identifying which advertising messages, either health or environment, are more effective in promoting vegan products, this study provides insights for companies to enhance their message framing strategies effectively.

A Foundational Study on Developing a Structural Model for AI-based Sentencing Prediciton Based on Violent Crime Judgment (인공지능기술 적용을 위한 강력범죄 판결문 기반 양형 예측 구조모델 개발 기초 연구)

  • Woongil Park;Eunbi Cho;Jeong-Hyeon Chang;Joo-chang Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2024
  • With the advancement of ICT (Information and Communication Technology), searching for judgments through the internet has become increasingly convenient. However, predicting sentencing based on judgments remains a challenging task for individuals. This is because sentencing involves a complex process of applying aggravating and mitigating factors within the framework of legal provisions, and it often depends on the subjective judgment of the judge. Therefore, this research aimed to develop a model for predicting sentencing using artificial intelligence by focusing on structuring the data from judgments, making it suitable for AI applications. Through theoretical and statistical analysis of previous studies, we identified variables with high explanatory power for predicting sentencing. Additionally, by analyzing 50 legal judgments related to serious crimes that are publicly available, we presented a framework for extracting essential information from judgments. This framework encompasses basic case information, sentencing details, reasons for sentencing, the reasons for the determination of the sentence, as well as information about offenders, victims, and accomplices evident within the specific content of the judgments. This research is expected to contribute to the development of artificial intelligence technologies in the field of law in the future.

The Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy of Firms: Setting Up Innovativeness as the Moderator (클라우드 컴퓨팅 서비스의 도입특성이 기업의 인지된 기대성과에 미치는 영향: 기업의 혁신채택성향을 조절변수로)

  • Jae Su Lim;Jay In Oh
    • Information Systems Review
    • /
    • v.19 no.1
    • /
    • pp.75-100
    • /
    • 2017
  • Today, firms are constantly transforming and innovating to survive under the rapidly changing business environment. The introduction of cloud computing services has become popular throughout society as a whole and is expected to result in many changes and developments not only in firms and but also in the public sector subject to innovation. The purpose of this study is to investigate the effect of the characteristics of cloud computing services on the perceived expected performance according to innovativeness based on innovation diffusion theory. The results of the analysis of the data collected from this research are as follows. The convenience and understanding of individuals' work as well as the benefits of cloud computing services to them depend on the innovative trend of cloud computing services. Further, the expectations for personal benefit and those for organizational benefit of cloud computing services are different from each other. Leading firms in the global market have been actively engaged in the utilization of cloud computing services in the public sector as well as in private firms. In consideration of the importance of cloud computing services, using cloud computing services as the target of innovation diffusion research is important. The results of the study are expected to contribute to developing future research models for the diffusion of new technologies, such as big data, digital convergence, and Internet of Things.