모바일 SNS, 스마트 기기의 급성장과 ICT(통신기술) 패러다임의 변화는 라이프 스타일의 변화와 함께 데이터가 폭발적으로 증가하는 결과를 초래하였다. 한편, 대용량의 데이터의사용은 비용이나 기술적 측면에서 많은 어려움을 초래하였다. 그러나, 빅데이터는 하둡과 같은 효율적인 빅데이터 처리 플랫폼 기술의 등장으로 주목을 받기 시작하였다. 본 논문에서는 주요 시장 국의 특허 분석을 통해 빅데이터 플랫폼 연구 및 개발 동향을 살펴보고자 한다. 특히, 2010년 12월을 기준으로 4개국에 출원 및 등록되어 있는 2,568건을 대상으로 분석을 진행하였다.
The wave of the 4th Industrial Revolution was announced by Schwab Klaus at the 2016 World Economic Forum in Davos, and prospects and measures with the future society in mind have been put in place. With the launch of the Moon Jae-in administration in May 2017, Korea has shifted all of its interest to Big Data, which is one of the most important features of the 4th Industrial Revolution. In this regard, this study focuses on the role of the public sector, explores related issues, and identifies an agenda for determining the demand for ways to foster Big Data ecosystem, from an objective perspective. Furthermore, this study seeks to establish priorities for key Big Data issues from various areas based on importance and urgency using a Delphi analysis. It also specifies the agenda by which Korea should exert national and social efforts based on these priorities in order to demonstrate the role of the public sector in reinforcing the Big Data ecosystem.
International journal of advanced smart convergence
/
제9권4호
/
pp.184-191
/
2020
With the emergence of the 4th Industrial Revolution, core technologies that will lead the 4th Industrial Revolution such as AI (artificial intelligence), big data, and Internet of Things (IOT) are also at the center of the topic of the general public. In particular, there is a growing trend of attempts to present future visions by discovering new models by using them for big data analysis based on data collected in a specific field, and inferring and predicting new values with the models. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable, the correlation between the variables, and multicollinearity. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified according to the purpose of analysis. Therefore, in this study, data is classified using a decision tree technique and a random forest technique among classification analysis, which is a machine learning technique that implements AI technology. And by evaluating the degree of classification of the data, we try to find a way to improve the classification and analysis rate of the data.
International journal of advanced smart convergence
/
제8권2호
/
pp.102-108
/
2019
Big data was associated with three key concepts, volume, variety, and velocity. Securities and investment services produce and store a large data of text/numbers. They have also the most data per company on the average in the US. Gartner found that the demand for big data in finance was 25%, which was the highest. Therefore securities and investment companies produce the largest data such as text/numbers, and have the highest demand. And insurance companies and credit card companies are using big data more actively than banking companies in Korea. Researches on the use of big data in securities and investment companies have been found to be insignificant. We surveyed 22 major securities and investment companies in Korea for activating big data. We can see they actively use AI for investment recommend. As for big data of securities and investment companies, we studied open API. Of the major 22 securities and investment companies, only six securities and investment companies are offering open APIs. The user OS is 100% Windows, and the language used is mainly VB, C#, MFC, and Excel provided by Windows. There is a difficulty in real-time analysis and decision making since developers cannot receive data directly using Hadoop, the big data platform. Development manuals are mainly provided on the Web, and only three companies provide as files. The development documentation for the file format is more convenient than web type. In order to activate big data in the securities and investment fields, we found that they should support Linux, and Java, Python, easy-to-view development manuals, videos such as YouTube.
Purpose - The purpose of this study was to examine the recent popular consumption trend, the hocance phenomenon, using social media big data. The study intended to present practical directions and marketing measures for the recovery and growth of the hotel industry after COVID-19 pandemic. Design/methodology/approach - Big data analysis has been used in various fields, and in this study, it was used to understand the hocance phenomenon. For three years from January 1, 2018 to December 31, 2020, we collected text data including the keyword 'hocance' from the blog and cafe of NAVER and Daum. TEXTOM and UCINET 6 were used to collect and analyze the data. Findings - According to the results of analysis, the words such as 'hocance', 'hotel', 'Seoul', 'travel', 'swimming pool', 'Incheon', 'breakfast', 'child' and 'friend' were identified with high frequency. The results of CONCOR analysis showed similar results in all three years. It has been confirmed that 'swimming pool', 'breakfast', 'child' and 'friend' are important when deciding on the hocance package. Research implications or Originality - The study was differentiated in that it used social media big data instead of traditional research methods. Furthermore, it reflected social phenomena as a consumption trend so there was practical value in establishing marketing strategies for the tourism and hotel industry.
정보통신 기술의 발달로 과거에는 다룰 수 없었던 대용량의 데이터 처리가 가능해지면서 빅데이터의 관심이 고조되고 있다. 제조 산업은 축적된 데이터가 풍부하여 빅데이터의 적용 및 활용이 가장 기대되는 분야이다. 제조 기업의 공정은 생산설계, 생산, 판매 등의 프로세스가 복잡하게 얽혀있기 때문에 품질 관리와 생산효율성의 증대를 위해 제조 공정 프로세스의 효율화가 중요하다. 본 연구에서는 빅데이터 기술과 프로세스 마이닝 기법을 제조 공정 분석에 접목시킨 빅데이터 클라우드 서비스를 제안한다. 제조 기업은 클라우드 서비스를 활용하여 공정 프로세스의 개선 및 비용절감 등의 효과를 거둘 수 있다. 빅데이터 클라우드 서비스는 공정 프로세스 분석, 공정 시간 분석 등의 다양한 분석 서비스를 제공하며 구현 완료하였다. 사례 연구를 통해 클라우드 서비스의 유효성을 검증하였다.
요즘에는 하드웨어의 발달 덕분에, 많은 기업들이 과거에 사용했던 데이터보다 훨씬 많은 양의 데이터를 조작하고 관리해야만 한다. 이런 이유에서, 기업들은 폭발적으로 증가하는 데이터를 수집하고 저장하고 다루기 위해서, 체계화된 도구, 플랫폼, 분석 방법론을 끊임없이 긴급하게 필요로 하고 있다. 본 논문에서는 우선 빅 데이터의 주요 요소를 이해하고, 둘째로 이러한 요소들을 활용한 빅 데이터 애플리케이션을 위한 주요 요소를 정의한다. 셋째로, 빅 데이터 분석을 위한 다양한 분석 기법에 대해 연구하고, 마지막으로 빅 데이터 분석을 위한 인프라를 제안한다.
This study focused on how to analyze the ICT policy formation process using social big data. Specifically, in this study, a method for quantifying variables that influenced policy formation using the concept of a policy triggering mechanism and elements necessary to present the analysis results were proposed. For the analysis of the ICT policy triggering mechanism, variables such as 'Scope', 'Duration', 'Interactivity', 'Diversity', 'Attention', 'Preference', 'Transmutability' were proposed. In addition, 'interpretation of results according to data level', 'presentation of differences between collection and analysis time points', and 'setting of garbage level' were suggested as elements necessary to present the analysis results.
Purpose The purpose of this study was to find the effect of the determinants on the Big data utilization in industry. The determinants of Big data utilization were deduced by reviewing theoretical background and discussions on Big data related researches. Research model and proposed hypothesis were constructed from TOE framework and UTAUT model. Design/methodology/approach The research was conducted to collect a sample data from the experts involved in the Big data projects in industry. In addition, interviews and online survey were performed to get sample data. Exploratory factor analysis was conducted to verify the grouping of these questionnaire items and confirmatory factor analysis was done to verify the validity and reliability of the measurement model. Finally, research hypothesis was verified and theoretical and practical implications were proposed for further studies. Findings The results show that the technical factor have a significant effect on the expectancy factor and the behavioral factor. The organizational factor have a significant effect on the behavioral factor. In addition, the expectancy factor was significant on the behavioral factor and the intention-to-use of Big data system.
Purpose: The purpose of this study is to propose useful suggestions by analyzing the causal effect relationship between the failure rate of quality and the process variables in the C5ISR domain of the defense industry. Methods: The collected data through the in house Systems were analyzed using Big data analysis. Data analysis between quality data and A/S history data was conducted using the CRISP-DM(Cross-Industry Standard Process for Data Mining) analysis process. Results: The results of this study are as follows: After evaluating the performance of candidate models for the influence of inspection data and A/S history data, logistic regression was selected as the final model because it performed relatively well compared to the decision tree with an accuracy of 82%/67% and an AUC of 0.66/0.57. Based on this model, we estimated the coefficients using 'R', a data analysis tool, and found that a specific variable(continuous maximum discharge current time) had a statistically significant effect on the A/S quality failure rate and it was analysed that 82% of the failure rate could be predicted. Conclusion: As the first case of applying big data analysis to quality issues in the defense industry, this study confirms that it is possible to improve the market failure rates of defense products by focusing on the measured values of the main causes of failures derived through the big data analysis process, and identifies improvements, such as the number of data samples and data collection limitations, to be addressed in subsequent studies for a more reliable analysis model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.