• 제목/요약/키워드: BigData Analysis

검색결과 3,419건 처리시간 0.041초

특허분석을 통한 빅데이터 분석 플랫폼 기술 개발 동향 (Big Data Analysis Platform Technology R&D Trend through Patent Analysis)

  • 노승민
    • 디지털융복합연구
    • /
    • 제12권9호
    • /
    • pp.169-175
    • /
    • 2014
  • 모바일 SNS, 스마트 기기의 급성장과 ICT(통신기술) 패러다임의 변화는 라이프 스타일의 변화와 함께 데이터가 폭발적으로 증가하는 결과를 초래하였다. 한편, 대용량의 데이터의사용은 비용이나 기술적 측면에서 많은 어려움을 초래하였다. 그러나, 빅데이터는 하둡과 같은 효율적인 빅데이터 처리 플랫폼 기술의 등장으로 주목을 받기 시작하였다. 본 논문에서는 주요 시장 국의 특허 분석을 통해 빅데이터 플랫폼 연구 및 개발 동향을 살펴보고자 한다. 특히, 2010년 12월을 기준으로 4개국에 출원 및 등록되어 있는 2,568건을 대상으로 분석을 진행하였다.

Toward a Policy for the Big Data-Based Social Problem-Solving Ecosystem: the Korean Context

  • Park, Sung-Uk;Park, Moon-Soo
    • Asian Journal of Innovation and Policy
    • /
    • 제8권1호
    • /
    • pp.58-72
    • /
    • 2019
  • The wave of the 4th Industrial Revolution was announced by Schwab Klaus at the 2016 World Economic Forum in Davos, and prospects and measures with the future society in mind have been put in place. With the launch of the Moon Jae-in administration in May 2017, Korea has shifted all of its interest to Big Data, which is one of the most important features of the 4th Industrial Revolution. In this regard, this study focuses on the role of the public sector, explores related issues, and identifies an agenda for determining the demand for ways to foster Big Data ecosystem, from an objective perspective. Furthermore, this study seeks to establish priorities for key Big Data issues from various areas based on importance and urgency using a Delphi analysis. It also specifies the agenda by which Korea should exert national and social efforts based on these priorities in order to demonstrate the role of the public sector in reinforcing the Big Data ecosystem.

Finding a plan to improve recognition rate using classification analysis

  • Kim, SeungJae;Kim, SungHwan
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.184-191
    • /
    • 2020
  • With the emergence of the 4th Industrial Revolution, core technologies that will lead the 4th Industrial Revolution such as AI (artificial intelligence), big data, and Internet of Things (IOT) are also at the center of the topic of the general public. In particular, there is a growing trend of attempts to present future visions by discovering new models by using them for big data analysis based on data collected in a specific field, and inferring and predicting new values with the models. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable, the correlation between the variables, and multicollinearity. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified according to the purpose of analysis. Therefore, in this study, data is classified using a decision tree technique and a random forest technique among classification analysis, which is a machine learning technique that implements AI technology. And by evaluating the degree of classification of the data, we try to find a way to improve the classification and analysis rate of the data.

A Study on Open API of Securities and Investment Companies in Korea for Activating Big Data

  • Ryu, Gui Yeol
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.102-108
    • /
    • 2019
  • Big data was associated with three key concepts, volume, variety, and velocity. Securities and investment services produce and store a large data of text/numbers. They have also the most data per company on the average in the US. Gartner found that the demand for big data in finance was 25%, which was the highest. Therefore securities and investment companies produce the largest data such as text/numbers, and have the highest demand. And insurance companies and credit card companies are using big data more actively than banking companies in Korea. Researches on the use of big data in securities and investment companies have been found to be insignificant. We surveyed 22 major securities and investment companies in Korea for activating big data. We can see they actively use AI for investment recommend. As for big data of securities and investment companies, we studied open API. Of the major 22 securities and investment companies, only six securities and investment companies are offering open APIs. The user OS is 100% Windows, and the language used is mainly VB, C#, MFC, and Excel provided by Windows. There is a difficulty in real-time analysis and decision making since developers cannot receive data directly using Hadoop, the big data platform. Development manuals are mainly provided on the Web, and only three companies provide as files. The development documentation for the file format is more convenient than web type. In order to activate big data in the securities and investment fields, we found that they should support Linux, and Java, Python, easy-to-view development manuals, videos such as YouTube.

소셜 미디어 빅데이터를 활용한 호캉스(hocance) 현상 분석 (An Analysis of the Hocance Phenomenon using Social Media Big Data)

  • 최홍열;박은경;남장현
    • 아태비즈니스연구
    • /
    • 제12권2호
    • /
    • pp.161-174
    • /
    • 2021
  • Purpose - The purpose of this study was to examine the recent popular consumption trend, the hocance phenomenon, using social media big data. The study intended to present practical directions and marketing measures for the recovery and growth of the hotel industry after COVID-19 pandemic. Design/methodology/approach - Big data analysis has been used in various fields, and in this study, it was used to understand the hocance phenomenon. For three years from January 1, 2018 to December 31, 2020, we collected text data including the keyword 'hocance' from the blog and cafe of NAVER and Daum. TEXTOM and UCINET 6 were used to collect and analyze the data. Findings - According to the results of analysis, the words such as 'hocance', 'hotel', 'Seoul', 'travel', 'swimming pool', 'Incheon', 'breakfast', 'child' and 'friend' were identified with high frequency. The results of CONCOR analysis showed similar results in all three years. It has been confirmed that 'swimming pool', 'breakfast', 'child' and 'friend' are important when deciding on the hocance package. Research implications or Originality - The study was differentiated in that it used social media big data instead of traditional research methods. Furthermore, it reflected social phenomena as a consumption trend so there was practical value in establishing marketing strategies for the tourism and hotel industry.

제조 공정 분석을 위한 빅데이터 클라우드 서비스 (Big data Cloud Service for Manufacturing Process Analysis)

  • 이용혁;송민석;하승진;백태현;손숙영
    • 한국빅데이터학회지
    • /
    • 제1권1호
    • /
    • pp.41-51
    • /
    • 2016
  • 정보통신 기술의 발달로 과거에는 다룰 수 없었던 대용량의 데이터 처리가 가능해지면서 빅데이터의 관심이 고조되고 있다. 제조 산업은 축적된 데이터가 풍부하여 빅데이터의 적용 및 활용이 가장 기대되는 분야이다. 제조 기업의 공정은 생산설계, 생산, 판매 등의 프로세스가 복잡하게 얽혀있기 때문에 품질 관리와 생산효율성의 증대를 위해 제조 공정 프로세스의 효율화가 중요하다. 본 연구에서는 빅데이터 기술과 프로세스 마이닝 기법을 제조 공정 분석에 접목시킨 빅데이터 클라우드 서비스를 제안한다. 제조 기업은 클라우드 서비스를 활용하여 공정 프로세스의 개선 및 비용절감 등의 효과를 거둘 수 있다. 빅데이터 클라우드 서비스는 공정 프로세스 분석, 공정 시간 분석 등의 다양한 분석 서비스를 제공하며 구현 완료하였다. 사례 연구를 통해 클라우드 서비스의 유효성을 검증하였다.

  • PDF

빅데이터 분석을 위한 인프라 설계 (Design of Infrastructure to Analyze Big Data)

  • 박승범;이상원;안현섭;정인환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.202-204
    • /
    • 2013
  • 요즘에는 하드웨어의 발달 덕분에, 많은 기업들이 과거에 사용했던 데이터보다 훨씬 많은 양의 데이터를 조작하고 관리해야만 한다. 이런 이유에서, 기업들은 폭발적으로 증가하는 데이터를 수집하고 저장하고 다루기 위해서, 체계화된 도구, 플랫폼, 분석 방법론을 끊임없이 긴급하게 필요로 하고 있다. 본 논문에서는 우선 빅 데이터의 주요 요소를 이해하고, 둘째로 이러한 요소들을 활용한 빅 데이터 애플리케이션을 위한 주요 요소를 정의한다. 셋째로, 빅 데이터 분석을 위한 다양한 분석 기법에 대해 연구하고, 마지막으로 빅 데이터 분석을 위한 인프라를 제안한다.

  • PDF

소셜 빅데이터 특성을 활용한 ICT 정책 격발 메커니즘 분석방법 제안 (A Study on the Analysis Method of ICT Policy Triggering Mechanism Using Social Big Data)

  • 최홍규
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1192-1201
    • /
    • 2021
  • This study focused on how to analyze the ICT policy formation process using social big data. Specifically, in this study, a method for quantifying variables that influenced policy formation using the concept of a policy triggering mechanism and elements necessary to present the analysis results were proposed. For the analysis of the ICT policy triggering mechanism, variables such as 'Scope', 'Duration', 'Interactivity', 'Diversity', 'Attention', 'Preference', 'Transmutability' were proposed. In addition, 'interpretation of results according to data level', 'presentation of differences between collection and analysis time points', and 'setting of garbage level' were suggested as elements necessary to present the analysis results.

제조업 종사자들의 빅데이터시스템 사용의도에 대한 결정요인의 영향 (The Effect of the Determinants on the Intention-to-Use of Big Data System in Manufacturing Industry)

  • 손달호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.159-175
    • /
    • 2021
  • Purpose The purpose of this study was to find the effect of the determinants on the Big data utilization in industry. The determinants of Big data utilization were deduced by reviewing theoretical background and discussions on Big data related researches. Research model and proposed hypothesis were constructed from TOE framework and UTAUT model. Design/methodology/approach The research was conducted to collect a sample data from the experts involved in the Big data projects in industry. In addition, interviews and online survey were performed to get sample data. Exploratory factor analysis was conducted to verify the grouping of these questionnaire items and confirmatory factor analysis was done to verify the validity and reliability of the measurement model. Finally, research hypothesis was verified and theoretical and practical implications were proposed for further studies. Findings The results show that the technical factor have a significant effect on the expectancy factor and the behavioral factor. The organizational factor have a significant effect on the behavioral factor. In addition, the expectancy factor was significant on the behavioral factor and the intention-to-use of Big data system.

국방 C5ISR 분야 품질문제의 빅데이터 분석 및 예측 모델에 대한 연구 (A Study on the Big Data Analysis and Predictive Models for Quality Issues in Defense C5ISR)

  • 허형조;고수진;백승현
    • 품질경영학회지
    • /
    • 제51권4호
    • /
    • pp.551-571
    • /
    • 2023
  • Purpose: The purpose of this study is to propose useful suggestions by analyzing the causal effect relationship between the failure rate of quality and the process variables in the C5ISR domain of the defense industry. Methods: The collected data through the in house Systems were analyzed using Big data analysis. Data analysis between quality data and A/S history data was conducted using the CRISP-DM(Cross-Industry Standard Process for Data Mining) analysis process. Results: The results of this study are as follows: After evaluating the performance of candidate models for the influence of inspection data and A/S history data, logistic regression was selected as the final model because it performed relatively well compared to the decision tree with an accuracy of 82%/67% and an AUC of 0.66/0.57. Based on this model, we estimated the coefficients using 'R', a data analysis tool, and found that a specific variable(continuous maximum discharge current time) had a statistically significant effect on the A/S quality failure rate and it was analysed that 82% of the failure rate could be predicted. Conclusion: As the first case of applying big data analysis to quality issues in the defense industry, this study confirms that it is possible to improve the market failure rates of defense products by focusing on the measured values of the main causes of failures derived through the big data analysis process, and identifies improvements, such as the number of data samples and data collection limitations, to be addressed in subsequent studies for a more reliable analysis model.