• Title/Summary/Keyword: Big data analytics

Search Result 287, Processing Time 0.021 seconds

Optimization Model for the Mixing Ratio of Coatings Based on the Design of Experiments Using Big Data Analysis (빅데이터 분석을 활용한 실험계획법 기반의 코팅제 배합비율 최적화 모형)

  • Noh, Seong Yeo;Kim, Young-Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.383-392
    • /
    • 2014
  • The research for coatings is one of the most popular and active research in the polymer industry. For the coatings, electronics industry, medical and optical fields are growing more important. In particular, the trend is the increasing of the technical requirements for the performance and accuracy of the coatings by the development of automotive and electronic parts. In addition, the industry has a need of more intelligent and automated system in the industry is increasing by introduction of the IoT and big data analysis based on the environmental information and the context information. In this paper, we propose an optimization model for the design of experiments based coating formulation data objects using the Internet technologies and big data analytics. In this paper, the coating formulation was calculated based on the best data analysis is based on the experimental design, modify the operator with respect to the error caused based on the coating formulation used in the actual production site data and the corrected result data. Further optimization model to correct the reference value by leveraging big data analysis and Internet of things technology only existing coating formulation is applied as the reference data using a manufacturing environment and context information retrieval in color and quality, the most important factor in maintaining and was derived. Based on data obtained from an experiment and analysis is improving the accuracy of the combination data and making it possible to give a LOT shorter working hours per data. Also the data shortens the production time due to the reduction in the delivery time per treatment and It can contribute to cost reduction or the like defect rate reduced. Further, it is possible to obtain a standard data in the manufacturing process for the various models.

A Study on the Revitalization of Local Tourism in Yongin City Based on Tourism Bigdata Analytics: Focusing on Geographic Information System Analytics Combining Mobile Communication and Credit Card Data (관광 빅데이터 기반의 용인시 관내 관광 활성화 방안: 이동통신과 신용카드 데이터를 결합한 지리정보시스템 분석을 중심으로)

  • An, Eunhee;An, Jungkook
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.207-216
    • /
    • 2021
  • Recently, there is increasing interest in attracting local tourist in the city to revitalize the local economy. For this purpose, customized tourism strategies based on the analysis of travel routes and consumption patterns are becoming important. However, existing studies either focused on limited mainstream tourist analysis or lacked analysis of tourists' behavior-based data perspectives. Therefore, this study aims to present a big data-based tourism strategy that provides customized information by analyzing the demand of individual travelers in details based on mobile service data and card expenditure data generated by the travelers in Yongin city. By tracing those data, this study visualized the tourists' itinerary and their expenditure patterns. The analysis of data from July 2017 to June 2018 shows that men tend to consume in various areas compared to women. It also shows consumption areas for people in their 30s and 40s are similar, whereas those in their 20s do not vary. Using the big data based on Geographic Information system, this study provides strategic insights to administrative personnel who are in charge of tour policy.

Time-series big data analytics software on IoT streaming data (빅데이터 기반 대용량 시계열 에너지 데이터 처리 시스템)

  • Kang, Jeonghoon;Yoo, June-Jae
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.52-53
    • /
    • 2018
  • 본 논문은 에너지 빅데이터를 분석하기 위해 대용량의 시계열 데이터를 처리하는 시스템의 설계, 구축 방법을 제시한다. 이미 사용 중인 건물이나 공장의 에너지 효율화를 위해서 정부는 효율자원 시장 지원 사업을 수행하고 있다, 에너지 소비 설비에 따라 고효율 자원으로 변경 설치하는 데 필요한 자금의 일부를 지원하고 있다. 정부지원으로 고효율 설비로 변경함에 따라 실증 사이트에서는 측정 데이터를 수집하여, 효율화 정도를 파악하기 위한 에너지 데이터 분석 시스템을 구축하여 운영하였다. 해당 측정 정보는 IoT 전력량계를 통해 수집되며, 수집된 데이터는 클라우드 시스템에서 다양한 머신러닝 알고리즘에 적용되어, 에너지 소비 효율 평가에 필요한 성능 지표를 연산한다. 구현된 진단 시스템은 기축 건물의 에너지 효율향상 상황을 분석하는데 기여할 수 있다. 빅데이터 기반의 에너지 분석 기능을 사용하여 에너지 고효율 장비의 운영시간, 부하율 등의 효율성과 성능통계를 연산할 수 있다.

A Method of Machine Learning-based Defective Health Functional Food Detection System for Efficient Inspection of Imported Food (효율적 수입식품 검사를 위한 머신러닝 기반 부적합 건강기능식품 탐지 방법)

  • Lee, Kyoungsu;Bak, Yerin;Shin, Yoonjong;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.139-159
    • /
    • 2022
  • As interest in health functional foods has increased since COVID-19, the importance of imported food safety inspections is growing. However, in contrast to the annual increase in imports of health functional foods, the budget and manpower required for inspections for import and export are reaching their limit. Hence, the purpose of this study is to propose a machine learning model that efficiently detects unsuitable food suitable for the characteristics of data possessed by government offices on imported food. First, the components of food import/export inspections data that affect the judgment of nonconformity were examined and derived variables were newly created. Second, in order to select features for the machine learning, class imbalance and nonlinearity were considered when performing exploratory analysis on imported food-related data. Third, we try to compare the performance and interpretability of each model by applying various machine learning techniques. In particular, the ensemble model was the best, and it was confirmed that the derived variables and models proposed in this study can be helpful to the system used in import/export inspections.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

A Study on Application of Machine Learning Algorithms to Visitor Marketing in Sports Stadium (기계학습 알고리즘을 사용한 스포츠 경기장 방문객 마케팅 적용 방안)

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, we analyze the big data of visitors who are looking for a sports stadium in marketing field and conduct research to provide customized marketing service to consumers. For this purpose, we intend to derive a similar visitor group by using the K-means clustering method. Also, we will use the K-nearest neighbors method to predict the store of interest for new visitors. As a result of the experiment, it was possible to provide a marketing service suitable for each group attribute by deriving a group of similar visitors through the above two algorithms, and it was possible to recommend products and events for new visitors.

Analysis of the Trends of Construction Technology Development based on Big Data - Focused on Construction Patents in Relation to the 4th Industrial Revolution ICT Technologies - (빅데이터 기반의 건설기술 개발 트렌드 분석에 관한 연구 - 4차 산업혁명 ICT 기술 관련 건설특허를 중심으로 -)

  • Han, Jae Hoon;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.20-31
    • /
    • 2017
  • As global interests in the 4th Industrial Revolution have recently increased, it becomes critical for the construction industry to pro-actively cope with it. For effective actions, the construction industry needs to make active use of 4th Industrial Revolution technologies based on the up-to-date understanding of the trends of construction technology development employing the 4th Industrial Revolution technologies. The objective of the study is to investigate and identify key trends of ICT construction technology development over the last ten years based on Big Data Analytics. The study identifies eleven key trends and discusses that ICT construction technology development has not been as active as expected and software technologies have been less developed compared to hardware technologies.

Analysis of Adverse Drug Reaction Reports using Text Mining (텍스트마이닝을 이용한 약물유해반응 보고자료 분석)

  • Kim, Hyon Hee;Rhew, Kiyon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.27 no.4
    • /
    • pp.221-227
    • /
    • 2017
  • Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extracting meaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions (ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on text analysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text of KAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the whole text, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis are performed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Among total 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache, vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움, dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion: Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining in ADRs research is able to play an important role in detecting signal information and prediction of ADRs.

A CF-based Health Functional Recommender System using Extended User Similarity Measure (확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템)

  • Sein Hong;Euiju Jeong;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • With the recent rapid development of ICT(Information and Communication Technology) and the popularization of digital devices, the size of the online market continues to grow. As a result, we live in a flood of information. Thus, customers are facing information overload problems that require a lot of time and money to select products. Therefore, a personalized recommender system has become an essential methodology to address such issues. Collaborative Filtering(CF) is the most widely used recommender system. Traditional recommender systems mainly utilize quantitative data such as rating values, resulting in poor recommendation accuracy. Quantitative data cannot fully reflect the user's preference. To solve such a problem, studies that reflect qualitative data, such as review contents, are being actively conducted these days. To quantify user review contents, text mining was used in this study. The general CF consists of the following three steps: user-item matrix generation, Top-N neighborhood group search, and Top-K recommendation list generation. In this study, we propose a recommendation algorithm that applies an extended similarity measure, which utilize quantified review contents in addition to user rating values. After calculating review similarity by applying TF-IDF, Word2Vec, and Doc2Vec techniques to review content, extended similarity is created by combining user rating similarity and quantified review contents. To verify this, we used user ratings and review data from the e-commerce site Amazon's "Health and Personal Care". The proposed recommendation model using extended similarity measure showed superior performance to the traditional recommendation model using only user rating value-based similarity measure. In addition, among the various text mining techniques, the similarity obtained using the TF-IDF technique showed the best performance when used in the neighbor group search and recommendation list generation step.

Design of Splunk Platform based Big Data Analysis System for Objectionable Information Detection (Splunk 플랫폼을 활용한 유해 정보 탐지를 위한 빅데이터 분석 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • The Internet of Things (IoT), which is emerging as a future economic growth engine, has been actively introduced in areas close to our daily lives. However, there are still IoT security threats that need to be resolved. In particular, with the spread of smart homes and smart cities, an explosive amount of closed-circuit televisions (CCTVs) have been installed. The Internet protocol (IP) information and even port numbers assigned to CCTVs are open to the public via search engines of web portals or on social media platforms, such as Facebook and Twitter; even with simple tools these pieces of information can be easily hacked. For this reason, a big-data analytics system is needed, capable of supporting quick responses against data, that can potentially contain risk factors to security or illegal websites that may cause social problems, by assisting in analyzing data collected by search engines and social media platforms, frequently utilized by Internet users, as well as data on illegal websites.