Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.6
/
pp.1399-1410
/
2015
Gartner is requiring companies to considerably change their survival paradigms insisting that companies need to understand and provide again the upcoming era of data competition. With the revealing of successful business cases through statistic algorithm-based predictive analytics, also, the conversion into preemptive countermeasure through predictive analysis from follow-up action through data analysis in the past is becoming a necessity of leading enterprises. This trend is influencing security analysis and log analysis and in reality, the cases regarding the application of the big data analysis framework to large-scale log analysis and intelligent and long-term security analysis are being reported file by file. But all the functions and techniques required for a big data log analysis system cannot be accommodated in a Hadoop-based big data platform, so independent platform-based big data log analysis products are still being provided to the market. This paper aims to suggest a framework, which is equipped with a real-time and non-real-time predictive analysis engine for these independent big data log analysis systems and can cope with cyber attack preemptively.
ALI, Qaisar;SALMAN, Asma;YAACOB, Hakimah;ZAINI, Zaki;ABDULLAH, Rose
The Journal of Asian Finance, Economics and Business
/
v.7
no.7
/
pp.1-13
/
2020
This study analyzes the key drivers (commitment, integration of big data, green supply chain management, and green human resource practices) of sustainable capabilities and the influence to which these sustainable capabilities impact the banks' environmental and financial performance. Additionally, this study analyzes the impact of green management practices on the integration of big data technology with operations. The theory of dynamic capability was deployed to propose and empirically test the conceptual model. Data was collected through a self-administrated survey questionnaire from 319 participants employed at 35 banks located in six ASEAN countries. The findings indicate that big data analytics strategies have an impact on internal processes and banks' sustainable and financial performance. This study indicates that banks committed towards proper data monitoring of its clients achieve operational efficiency and sustainability goals. Moreover, our results confirm that banks practising green innovation strategies experience better environmental and economic performance as the employees of these banks have received advance green human resource training. Finally, our study found that internal and external green supply chain management practices have a positive impact on banks' environmental and financial performance, which confirms that ASEAN banks contributing in reduction of environmental impact through its operations will ultimately experience increased financial performance.
This review article addresses the role of safety professionals in the diffusion strategies for predictive analytics for safety performance. The article explores the models, definitions, roles, and relationships of safety professionals in knowledge application, access, management, and leadership in safety analytics. The article addresses challenges safety professionals face when integrating safety analytics in organizational settings in four operations areas: application, technology, management, and strategy. A review of existing conventional safety data sources (safety data, internal data, external data, and context data) is briefly summarized as a baseline. For each of these data sources, the article points out how emerging analytic data sources (such as Industry 4.0 and the Internet of Things) broaden and challenge the scope of work and operational roles throughout an organization. In doing so, the article defines four perspectives on the integration of predictive analytics into organizational safety practice: the programmatic perspective, the technological perspective, the sociocultural perspective, and knowledge-organization perspective. The article posits a four-level, organizational knowledge-skills-abilities matrix for analytics integration, indicating key organizational capacities needed for each area. The work shows the benefits of organizational alignment, clear stakeholder categorization, and the ability to predict future safety performance.
In this paper, we have proposed the processing and analyzing the linked open data (LOD), a kind of big-data, using resources of cloud computing. The LOD is web-based open data in order to share and recycle of public data. Specially, we defined the InfograaS (Info-graphic as a service), new business area of SaaS (software as a service), to support visualization technique for BA (business analytics) and Info-graphic. The goal of this study is easily to use it by the non-specialist and beginner without experts of visualization and business analysis. Data visualization is the process to represent visually and understand the data analysis easily. The purpose of data visualization is to deliver information clearly and effectively by chart and figure. The big data of public data are shared and presented in the charts and the graphics understood easily by various processing results using Hadoop, R, machine learning, and data mining of open source and resources of cloud computing.
The objective of this study was to acquire a general and text-based awareness and recognition of cruise food hygiene through big data analytics. For the purpose, this study collected data with conducting the keyword "food hygiene, cruise" on the web pages and news on Google, during October 1st, 2015 to October 1st, 2017 (two years). The data collection was processed by SCTM which is a data collecting and processing program and eventually, 899 kb, approximately 20,000 words were collected. For the data analysis, UCINET 6.0 packaged with visualization tool-Netdraw was utilized. As a result of the data analysis, the words such as jobs, news, showed the high frequency while the results of centrality (Freeman's degree centrality and Eigenvector centrality) and proximity indicated the distinct rank with the frequency. Meanwhile, as for the result of CONCOR analysis, 4 segmentations were created as "food hygiene group", "person group", "location related group" and "brand group". The diagnosis of this study for the food hygiene in cruise industry through big data is expected to provide instrumental implications both for academia research and empirical application.
According to the National Health Insurance Corporation in 2008, there were 17,764,428 physical therapy patients, exceeding 31 percent for the population covered by health insurance. This means that three out of 10 Koreans received physical therapy. And now, 10 years later, due to the aging population and the increase in the sports population, the number of patients with physical therapy is expected to be much more than a decade ago. Among them, many physical therapy patients were orthopedic and neurologic disorder. However, in the medical field applied to physical therapy, it is widely applied across all medical fields, including orthopedics, neurosurgery, pediatrics, gynecology, thoracic surgery and dentistry. It is believed that various cases of patients receiving physical therapy will be secured. as mentioned earlier, there will be a large number of patients with physical therapy treatments, making big data analytics easier. based on this, physical therapy applications are thought to be helpful in the analogy of disease and the development of effective physical therapy and will ultimately promote the development of physical therapy.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.513-516
/
2022
본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.340-350
/
2022
The big data term refers to the great volume of data and complicated data structure with difficulties in collecting, storing, processing, and analyzing these data. Big data analytics refers to the operation of disclosing hidden patterns through big data. This information and data set cloud to be useful and provide advanced services. However, analyzing and processing this information could cause revealing and disclosing some sensitive and personal information when the information is contained in applications that are correlated to users such as location-based services, but concerns are diminished if the applications are correlated to general information such as scientific results. In this work, a survey has been done over security and privacy challenges and approaches in big data. The challenges included here are in each of the following areas: privacy, access control, encryption, and authentication in big data. Likewise, the approaches presented here are privacy-preserving approaches in big data, access control approaches in big data, encryption approaches in big data, and authentication approaches in big data.
Big Data is a key asset for the company and a key factor in boosting its competitiveness in the logistics sector. However, there is still a lack of research on how to collect, analyze and utilize Big Data in logistics. In this context, this study has developed a value model applicable to logistics companies based on the results of analysis and application of Big Data in the logistics of previous studies and DHL. The purpose of this study is to improve the operational efficiency and customer experience maximization level of logistics companies through utilization of big data analysis in logistics, to improve competitiveness of big data utilization and to develop new business opportunities. This study has a significance to newly create a value model for utilization of big data analysis in logistics sector and can provide implications for other industries as well as logistics sector in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.