Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.
교육 분야에서의 빅데이터 활용이 선진국을 중심으로 확산되고 있다. 그러나 국내의 경우 이와 관련된 실험적 접근만이 있을 뿐 관련 연구나 현장의 서비스는 아직 나타나지 않고 있는 실정이다. 따라서 이러닝 업계에서 빅데이터의 응용이 저조한 이유를 파악하고 이를 개선할 연구와 대안 모색이 시급한 상황이다. 연구 결과, 이러닝 산업계에서는 빅데이터의 이해 수준이 높으면 빅데이터가 이러닝에 미치는 영향이 크다고 인식하고 있으며, 매출 규모가 큰 업체일수록 영향이 크다고 인식하고 있는 것으로 종합되었다. 이에 본 연구는 매출규모에 따라 다른 빅데이터에 관한 교육 및 활용 지원 정책을 펼 것을 제언하였다.
Purpose: The purpose of the study was to understand a trend of esports in terms of gamers' and fans' perceptions toward esports using social big data. Research design, data, and methodology: In this study, researchers first selected keywords related to esports. Then a total of 10,138 buzz data created at twitter, Facebook, news media, blogs, café and community between November 10, 2022 and November 19, 2023 were collected and analyzed with 'Textom', a big data solution. Results: The results of this study were as follows. Firstly, the news data's main articles were about competitions hosted by local governments and policies to revitalize the gaming industry. Secondly, As a result of esports analysis using Textom, there was a lot of interest in the adoption of the Hangzhou Asian Games as an official event and various esports competitions. As a result of the sentiment analysis, the positive content was related to the development potential of the esports industry, and the negative content was a discussion about the fundamental problem of whether esports is truly a sport. Thirdly, As a result of analyzing social big data on esports and the Olympics, there was hope that it would be adopted as an official event in the Olympics due to its adoption as an official event in the Hangzhou Asian Games. Conclusions: There was a positive opinion that the adoption of esports as an official Olympic event had positive content that could improve the quality of the game, and a negative opinion that games with actions that violate the Olympic spirit, such as murder and assault, should not be adopted as an official Olympic event. Further implications were discussed.
최근 국내 주요 금융권 및 방송사를 타깃으로 사이버 테러가 발생하여 많은 수의 PC가 감염되어 정상적인 서비스 제공이 어려워졌으며 이로 인한 금전적 피해도 매우 큰 것으로 보고되었다. 빅 데이터의 중요성 인식과 이를 마케팅에 이용하려는 노력은 매우 활발한데 비해 빅 데이터의 보안 및 개인정보보호에 대한 노력은 상대적으로 낮은 수준을 보이고 있다. 이에 본 연구에서는 빅 데이터 산업의 실태분석과 지능화되고 있는 빅 데이터 보안 위협과 방어 기술의 변화에 대해 알아보고, 빅 데이터 보안에 대한 향후 대응방안을 제시한다.
품질검사는 중간상품이나 최종상품을 품질관리 표준을 만족하는 양품과 불량품으로 분리하는 일을 수행한다. 대량생산체계에서 품질을 수작업으로 검사하는 것은 일관성과 효율성을 저하시키므로 대량으로 생산되는 상품의 품질을 검사하는 것은 다수의 공정에서 기계에 의한 자동 확인과 분류를 포함하게 된다. 생산공정에서 발생하는 데이터를 활용하여 공정을 개선하고 최적화하려는 선행 연구들이 많았음에도 불구하고, 실시간에 많은 데이터를 처리하는데 있어서의 기술적인 한계로 인해 실제 구현에서의 제약이 많이 있었다. 최근 빅데이터에 관한 연구에서는 데이터 처리기술을 개선하였고, 실시간에 데이터를 수집, 처리, 분석하는 과정을 가능하게 하게 하고 있다. 본 논문에서는 품질검사를 위한 빅데이터 적용의 단계와 세부사항을 제안하고, 유제품 산업에 적용 사례를 제시하려고 한다. 먼저 선행 연구들을 조사하고, 제조 부문에 적용할 수 있는 빅데이터 분석절차를 제안하며 제안된 방법의 실현가능성을 평가하기 위해서, 유제품 산업 분야의 품질검사과정 중 하나에 회선신경망(Convolutional Neural Network) 기술 및 랜덤포레스트(Random Forest) 기술을 적용하였다. 품질검사를 위해 제품의 뚜껑 및 빨대의 사진을 수집, 처리, 분석하여, 결함 여부를 판단하고, 과거 품질 검사결과와 비교하였다. 제안된 방법은 과거에 수행되었던 품질검사에 비해 분류 정확성 측면에서 의미 있는 개선을 확인할 수 있었다. 본 연구를 통해, 유제품 산업의 빅데이터 활용을 통한 품질검사 정확도 개선 가능성을 확인하였다.
The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.
본 연구는 다양한 빅데이터를 지역관광 정책에 활용한 제주특별자치도의 사례를 토대로, 관광빅데이터의 활용성과와 과제를 제시하였다. 가장 큰 활용성과는 관광빅데이터를 통해 급변하는 관광트랜드와 관광업계의 동향을 시의성있고 구체적으로 파악할 수 있게 되었고, 기존 관광통계를 정교화하는데 활용할 수 있었다는 점이다. 여기서 더 나아가 제주는 빅데이터의 활용 범위를 관광 현상 이해의 수준을 넘어 실시간 맞춤형 서비스 플랫폼 구축까지 영역을 확장하였다. 이것이 가능했던 이유는 데이터 수집 및 분석 환경 구축과 산·관·학의 협력적 거버넌스가 조성되었기 때문이다. 향후 해결해야 할 과제는 첫째, 민간 데이터셋 위주의 분석으로 예산 의존적이라는 한계와 둘째, 스마트관광의 궁극적 목표인 개인맞춤형서비스 구축을 위한 개인수준 데이터 수집 인프라, 개인정보보호법 등의 제도적인 문제의 해결이다. 마지막으로, 데이터 분석과 데이터 연계에 도달하기까지의 전문성과 기술적 한계들이 남아 있다.
본 연구는 재생에너지와 관련된 에너지 분야의 동향과 관계구조를 분석하는 것이다. 이를 위해 본 연구에서는 SNS Data를 포한한 Big Data를 중점으로 분석하였다. SNS는 Instragram 플랫폼을 활용하여 재생에너지 해시태그들을 수집하였으며, 빅데이터 분석, 소셜네트워크 분석을 위한 워드임베딩 방법으로 사용하였고, 본 연구에서 도출된 결과를 토대로 재생에너지 산업의 발전에 활용할 수 있을 것으로 기대된다.
세계경제포럼(WEF)의 제46차 다보스포럼은 향후 4차 산업의 지속적 성장을 예견하고 있다. 현재 4차 산업은 다양한 학문적·실무적 영역에서 주목받고 있으며, 4차 산업의 핵심기술로 빅데이터는 인공지능과 함께 4차 산업혁명을 선도할 주요 자원으로 평가받고 있다. 빅데이터의 관심이 증가하면서 이에 대한 연구들이 활발히 이루어지고 있다. 하지만 기존의 빅데이터에 대한 문헌 연구들은 정성적 연구에 치중되어 있어 정량적 연구가 매우 부족한 상황이다. 따라서 본 연구는 MIS 분야의 빅데이터 연구 흐름을 분석하여 정량화에 대한 학문적 갈증을 해갈하고자 한다. 본 연구는 MIS분야의 주요 저널에 게재된 145개의 빅데이터 논문의 초록을 수집하였으며, 이중 과반수의 논문이 Decision Support Systems 저널에 게재된 것을 확인하였다. 편향을 제거하고자 DSS저널에 대해서만 텍스트 마이닝과 텍스트 네트워크 분석을 실시하였다. 분석 결과, 2012년부터 2014년 사이에 경영분야에 빅데이터를 접목하는 연구가 주로 진행되었고 2015년부터 2017년 사이에는 빅데이터 자체에 대한 연구와 빅데이터를 효율적으로 사용하기 위한 시스템 개발 및 분석방법에 대한 연구가 주로 이루어졌다는 것을 발견할 수 있었다.
IDC(International Data Corporation) 사(社)의 최근 보고서에 따르면, 2025년에는 2016년에 생성된 데이터의 10배에 달하는 163제타바이트의 데이터가 생성될 것이고 그 주체의 비중은 소비자에서 기업으로 이동하고 있다고 한다. 이러한 소위 '빅데이터의 물결'은 도래하고 있고 그 파장은 산업 전반적으로 영향을 미칠 것이다. 따라서, 방대한 데이터를 효과적으로 관리하는 것은 기업의 관점에서 그 어느 때보다 더 중요하다. 하지만, IT 투자에 대한 효과를 측정한 선행 연구는 다수 존재함에도 불구하고 빅데이터 투자 효과를 측정한 선행 연구는 거의 전무한 실정이다. 따라서, 해당 투자 효과를 정량적으로 분석한다면 기업의 의사 결정을 도울 수 있을 것이다. 본 연구는 효율적 시장 가설을 이론적 바탕으로 둔 사건연구방법론(Event Study Methodology)을 적용하여, 기업의 빅데이터 투자가 시장 투자자들의 반응에 미치는 영향을 측정하였다. 또한, 보다 심층적으로 이 효과를 분석하기 위해서 5가지 하위 변수를 설정했고 그 내용은 기업 크기 구분, 산업 구분(Finance와 ICT), 투자 구축 완료 구분, 벤더 유무 구분이다. 분석 결과, 91개 기업은 빅데이터 투자 공시 이후 시장 가치가 평균 0.92% 상승한다는 사실을 확인하였다. 특히 Finance 기업, non-ICT 기업, 시가 총액이 작은 기업, 빅데이터 전문 벤더 기업을 통해 투자한 기업, 그리고 빅데이터 시스템이 구축 완료됐다는 공시에 해당하는 기업의 시장 가치가 두드러지게 상승한다는 사실을 알 수 있었다. 본 연구는 빅데이터 투자 효과를 측정한 선행 연구가 거의 전무하다는 점에서 학문적인 의의를 지니고, 빅데이터 투자를 고려 중인 기업 의사 결정자들에게 실질적인 참고 자료가 될 수 있다는 점에서 실무적인 시사점을 갖는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.