• 제목/요약/키워드: Big Data industry

검색결과 898건 처리시간 0.024초

The Adoption of Big Data to Achieve Firm Performance of Global Logistic Companies in Thailand

  • KITCHAROEN, Krisana
    • 유통과학연구
    • /
    • 제21권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.

이러닝 분야의 빅데이터에 관한 인식과 영향에 관한 융합적 분석 (Convergence Analysis of Recognition and Influence on Bigdata in the e-Learning Field)

  • 노규성
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.51-58
    • /
    • 2015
  • 교육 분야에서의 빅데이터 활용이 선진국을 중심으로 확산되고 있다. 그러나 국내의 경우 이와 관련된 실험적 접근만이 있을 뿐 관련 연구나 현장의 서비스는 아직 나타나지 않고 있는 실정이다. 따라서 이러닝 업계에서 빅데이터의 응용이 저조한 이유를 파악하고 이를 개선할 연구와 대안 모색이 시급한 상황이다. 연구 결과, 이러닝 산업계에서는 빅데이터의 이해 수준이 높으면 빅데이터가 이러닝에 미치는 영향이 크다고 인식하고 있으며, 매출 규모가 큰 업체일수록 영향이 크다고 인식하고 있는 것으로 종합되었다. 이에 본 연구는 매출규모에 따라 다른 빅데이터에 관한 교육 및 활용 지원 정책을 펼 것을 제언하였다.

A Trend Analysis on E-sports using Social Big Data

  • Kyoung Ah YEO;Min Soo KIM
    • Journal of Sport and Applied Science
    • /
    • 제8권1호
    • /
    • pp.11-17
    • /
    • 2024
  • Purpose: The purpose of the study was to understand a trend of esports in terms of gamers' and fans' perceptions toward esports using social big data. Research design, data, and methodology: In this study, researchers first selected keywords related to esports. Then a total of 10,138 buzz data created at twitter, Facebook, news media, blogs, café and community between November 10, 2022 and November 19, 2023 were collected and analyzed with 'Textom', a big data solution. Results: The results of this study were as follows. Firstly, the news data's main articles were about competitions hosted by local governments and policies to revitalize the gaming industry. Secondly, As a result of esports analysis using Textom, there was a lot of interest in the adoption of the Hangzhou Asian Games as an official event and various esports competitions. As a result of the sentiment analysis, the positive content was related to the development potential of the esports industry, and the negative content was a discussion about the fundamental problem of whether esports is truly a sport. Thirdly, As a result of analyzing social big data on esports and the Olympics, there was hope that it would be adopted as an official event in the Olympics due to its adoption as an official event in the Hangzhou Asian Games. Conclusions: There was a positive opinion that the adoption of esports as an official Olympic event had positive content that could improve the quality of the game, and a negative opinion that games with actions that violate the Olympic spirit, such as murder and assault, should not be adopted as an official Olympic event. Further implications were discussed.

빅 데이터 보안 기술 및 대응방안 연구 (Big Data Security Technology and Response Study)

  • 김병철
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.445-451
    • /
    • 2013
  • 최근 국내 주요 금융권 및 방송사를 타깃으로 사이버 테러가 발생하여 많은 수의 PC가 감염되어 정상적인 서비스 제공이 어려워졌으며 이로 인한 금전적 피해도 매우 큰 것으로 보고되었다. 빅 데이터의 중요성 인식과 이를 마케팅에 이용하려는 노력은 매우 활발한데 비해 빅 데이터의 보안 및 개인정보보호에 대한 노력은 상대적으로 낮은 수준을 보이고 있다. 이에 본 연구에서는 빅 데이터 산업의 실태분석과 지능화되고 있는 빅 데이터 보안 위협과 방어 기술의 변화에 대해 알아보고, 빅 데이터 보안에 대한 향후 대응방안을 제시한다.

유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법 (Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach)

  • 황현석;이상일;김성현;이상원
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.125-140
    • /
    • 2018
  • 품질검사는 중간상품이나 최종상품을 품질관리 표준을 만족하는 양품과 불량품으로 분리하는 일을 수행한다. 대량생산체계에서 품질을 수작업으로 검사하는 것은 일관성과 효율성을 저하시키므로 대량으로 생산되는 상품의 품질을 검사하는 것은 다수의 공정에서 기계에 의한 자동 확인과 분류를 포함하게 된다. 생산공정에서 발생하는 데이터를 활용하여 공정을 개선하고 최적화하려는 선행 연구들이 많았음에도 불구하고, 실시간에 많은 데이터를 처리하는데 있어서의 기술적인 한계로 인해 실제 구현에서의 제약이 많이 있었다. 최근 빅데이터에 관한 연구에서는 데이터 처리기술을 개선하였고, 실시간에 데이터를 수집, 처리, 분석하는 과정을 가능하게 하게 하고 있다. 본 논문에서는 품질검사를 위한 빅데이터 적용의 단계와 세부사항을 제안하고, 유제품 산업에 적용 사례를 제시하려고 한다. 먼저 선행 연구들을 조사하고, 제조 부문에 적용할 수 있는 빅데이터 분석절차를 제안하며 제안된 방법의 실현가능성을 평가하기 위해서, 유제품 산업 분야의 품질검사과정 중 하나에 회선신경망(Convolutional Neural Network) 기술 및 랜덤포레스트(Random Forest) 기술을 적용하였다. 품질검사를 위해 제품의 뚜껑 및 빨대의 사진을 수집, 처리, 분석하여, 결함 여부를 판단하고, 과거 품질 검사결과와 비교하였다. 제안된 방법은 과거에 수행되었던 품질검사에 비해 분류 정확성 측면에서 의미 있는 개선을 확인할 수 있었다. 본 연구를 통해, 유제품 산업의 빅데이터 활용을 통한 품질검사 정확도 개선 가능성을 확인하였다.

빅데이터 분류 기법에 따른 벤처 기업의 성장 단계별 차이 분석 (The Difference Analysis between Maturity Stages of Venture Firms by Classification Techniques of Big Data)

  • 정병호
    • 디지털산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.197-212
    • /
    • 2019
  • The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.

지역관광 빅데이터 정책성과와 과제 -제주특별자치도를 사례로- (Policy Achievements and Tasks for Using Big-Data in Regional Tourism -The Case of Jeju Special Self-Governing Province-)

  • 고선영;정근오
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.579-586
    • /
    • 2021
  • 본 연구는 다양한 빅데이터를 지역관광 정책에 활용한 제주특별자치도의 사례를 토대로, 관광빅데이터의 활용성과와 과제를 제시하였다. 가장 큰 활용성과는 관광빅데이터를 통해 급변하는 관광트랜드와 관광업계의 동향을 시의성있고 구체적으로 파악할 수 있게 되었고, 기존 관광통계를 정교화하는데 활용할 수 있었다는 점이다. 여기서 더 나아가 제주는 빅데이터의 활용 범위를 관광 현상 이해의 수준을 넘어 실시간 맞춤형 서비스 플랫폼 구축까지 영역을 확장하였다. 이것이 가능했던 이유는 데이터 수집 및 분석 환경 구축과 산·관·학의 협력적 거버넌스가 조성되었기 때문이다. 향후 해결해야 할 과제는 첫째, 민간 데이터셋 위주의 분석으로 예산 의존적이라는 한계와 둘째, 스마트관광의 궁극적 목표인 개인맞춤형서비스 구축을 위한 개인수준 데이터 수집 인프라, 개인정보보호법 등의 제도적인 문제의 해결이다. 마지막으로, 데이터 분석과 데이터 연계에 도달하기까지의 전문성과 기술적 한계들이 남아 있다.

SNS 빅데이터 분석을 통한 재생에너지 동향 및 관계구조 (Renewable energy trends and relationship structure by SNS big data analysis)

  • 김종민
    • 융합보안논문지
    • /
    • 제22권1호
    • /
    • pp.55-60
    • /
    • 2022
  • 본 연구는 재생에너지와 관련된 에너지 분야의 동향과 관계구조를 분석하는 것이다. 이를 위해 본 연구에서는 SNS Data를 포한한 Big Data를 중점으로 분석하였다. SNS는 Instragram 플랫폼을 활용하여 재생에너지 해시태그들을 수집하였으며, 빅데이터 분석, 소셜네트워크 분석을 위한 워드임베딩 방법으로 사용하였고, 본 연구에서 도출된 결과를 토대로 재생에너지 산업의 발전에 활용할 수 있을 것으로 기대된다.

정보시스템 분야의 빅데이터 연구 흐름 분석 : Information Systems 관련 저널을 중심으로 (BigData Research in Information Systems : Focusing on Journal Articles about Information Systems)

  • 박경보;김주영;김한민
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.681-689
    • /
    • 2019
  • 세계경제포럼(WEF)의 제46차 다보스포럼은 향후 4차 산업의 지속적 성장을 예견하고 있다. 현재 4차 산업은 다양한 학문적·실무적 영역에서 주목받고 있으며, 4차 산업의 핵심기술로 빅데이터는 인공지능과 함께 4차 산업혁명을 선도할 주요 자원으로 평가받고 있다. 빅데이터의 관심이 증가하면서 이에 대한 연구들이 활발히 이루어지고 있다. 하지만 기존의 빅데이터에 대한 문헌 연구들은 정성적 연구에 치중되어 있어 정량적 연구가 매우 부족한 상황이다. 따라서 본 연구는 MIS 분야의 빅데이터 연구 흐름을 분석하여 정량화에 대한 학문적 갈증을 해갈하고자 한다. 본 연구는 MIS분야의 주요 저널에 게재된 145개의 빅데이터 논문의 초록을 수집하였으며, 이중 과반수의 논문이 Decision Support Systems 저널에 게재된 것을 확인하였다. 편향을 제거하고자 DSS저널에 대해서만 텍스트 마이닝과 텍스트 네트워크 분석을 실시하였다. 분석 결과, 2012년부터 2014년 사이에 경영분야에 빅데이터를 접목하는 연구가 주로 진행되었고 2015년부터 2017년 사이에는 빅데이터 자체에 대한 연구와 빅데이터를 효율적으로 사용하기 위한 시스템 개발 및 분석방법에 대한 연구가 주로 이루어졌다는 것을 발견할 수 있었다.

기업의 빅데이터 투자가 기업가치에 미치는 영향 연구 (The effect of Big-data investment on the Market value of Firm)

  • 권영진;정우진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.99-122
    • /
    • 2019
  • IDC(International Data Corporation) 사(社)의 최근 보고서에 따르면, 2025년에는 2016년에 생성된 데이터의 10배에 달하는 163제타바이트의 데이터가 생성될 것이고 그 주체의 비중은 소비자에서 기업으로 이동하고 있다고 한다. 이러한 소위 '빅데이터의 물결'은 도래하고 있고 그 파장은 산업 전반적으로 영향을 미칠 것이다. 따라서, 방대한 데이터를 효과적으로 관리하는 것은 기업의 관점에서 그 어느 때보다 더 중요하다. 하지만, IT 투자에 대한 효과를 측정한 선행 연구는 다수 존재함에도 불구하고 빅데이터 투자 효과를 측정한 선행 연구는 거의 전무한 실정이다. 따라서, 해당 투자 효과를 정량적으로 분석한다면 기업의 의사 결정을 도울 수 있을 것이다. 본 연구는 효율적 시장 가설을 이론적 바탕으로 둔 사건연구방법론(Event Study Methodology)을 적용하여, 기업의 빅데이터 투자가 시장 투자자들의 반응에 미치는 영향을 측정하였다. 또한, 보다 심층적으로 이 효과를 분석하기 위해서 5가지 하위 변수를 설정했고 그 내용은 기업 크기 구분, 산업 구분(Finance와 ICT), 투자 구축 완료 구분, 벤더 유무 구분이다. 분석 결과, 91개 기업은 빅데이터 투자 공시 이후 시장 가치가 평균 0.92% 상승한다는 사실을 확인하였다. 특히 Finance 기업, non-ICT 기업, 시가 총액이 작은 기업, 빅데이터 전문 벤더 기업을 통해 투자한 기업, 그리고 빅데이터 시스템이 구축 완료됐다는 공시에 해당하는 기업의 시장 가치가 두드러지게 상승한다는 사실을 알 수 있었다. 본 연구는 빅데이터 투자 효과를 측정한 선행 연구가 거의 전무하다는 점에서 학문적인 의의를 지니고, 빅데이터 투자를 고려 중인 기업 의사 결정자들에게 실질적인 참고 자료가 될 수 있다는 점에서 실무적인 시사점을 갖는다.