• 제목/요약/키워드: Big Data Utilization

검색결과 388건 처리시간 0.03초

디지털 덴탈 헬스케어 분야에서의 빅데이터 활용 전망에 대한 연구 (A study on the applications and prospects of big data in the field of digital dental healthcare)

  • 류재경;김남중;김소민;이선경
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.42-48
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the applications and prospects of big data in digital dental healthcare. Methods: The study included 30 participants in the dental field (dentists, technicians, professors, and graduate students). From June 25 to 30, 2023, the contents of the study were thoroughly explained, consent was obtained from the research subjects, and a questionnaire was administered via an internet service. The questionnaires of 28 participants who responded completely were used for analysis. The collected data were statistically processed using IBM SPSS Statistics ver. 22.0 (IBM). Results: The use of big data in digital dental healthcare, digital dental health system, mobile dental health, dental health analysis, and telehealthcare were all heavily surveyed, with an average score of 3.97 or higher on a 5-point Likert scale. The areas where big data can be utilized in digital dental healthcare are as follows. The utilization rate for three-dimensional digital product development via linkage with big data systems and industrial field manufacturing technology was found to be 4.11±0.67, and the analysis of trends by age in the occurrence of various oral diseases was found to be 4.00±0.98. Conclusion: In the future, research into the viability of big data's success in the medical data field, which is directly related to human life, is needed. Additionally, social policies and regulations regarding big data-related information and standards in dental healthcare are necessary.

기업의 빅데이터 적용방안 연구 -A사, Y사 빅데이터 시스템 적용 사례- (Study on the Application Methods of Big Data at a Corporation -Cases of A and Y corporation Big Data System Projects-)

  • 이재성;홍성찬
    • 인터넷정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.103-112
    • /
    • 2014
  • 지난 수년간 스마트 폰 같은 스마트 기기의 빠른 확산과 함께 인터넷과 SNS 등 소셜 미디어가 급성장함에 따라 개인 정보와 소비패턴, 위치 정보 등이 포함된 가치 있는 데이터가 매 순간 엄청난 양으로 생성되고 있으며, M2M (Machine to Machine)과 IoT (Internet of Things) 등이 활성화되면서 IT 및 생산인프라 자체도 다량의 데이터를 직접 생성하기 시작했다. 본 연구는 기업에서 활용할 수 있는 빅데이터의 대표적 유형인 정형 및 비정형 데이터의 적용사례를 고찰함으로써 데이터 유형에 따른적용 영역별 파급효과를 알아본다. 또한 일반적으로 알려져 있는 비정형 빅데이터는 물론 정형빅데이터를 활용하여 실제로 기업에 보다 나은 가치를 창출할 수 있는 방안을 알아보는 것을 목적으로 한다. 이에 대한연구 결과로 빅데이터의 기업내 활동이 나아갈 수 있는 지향점으로써 내 외부에서 발생하는 정형데이터와 비정형 데이터를 적절히 결합함으로써 분석의 효과를 극대화 할 수 있음을 보여 주었다.

공간빅데이터를 위한 정보 시각화 방법 (Information Visualization Process for Spatial Big Data)

  • 서양모;김원균
    • Spatial Information Research
    • /
    • 제23권6호
    • /
    • pp.109-116
    • /
    • 2015
  • 본 연구에서는 공간빅데이터의 개념과 특징을 정의하고 데이터에 대한 통찰력을 높일 수 있는 정보 시각화 방법론을 조사하였다. 또한 시각화 과정에서 발생할 수 있는 문제점 및 해결방법을 제시하였다. 공간빅데이터를 공간정보의 정량적인 확장의 결과와 빅데이터의 정성적인 확장의 결과로 정의하였다. 공간빅데이터는 6V(Volume, Variety, Velocity, Value, Veracity, Visualization)의 특징을 갖고 있으며, 최근 활용 서비스 측면이 이슈화 되면서 공간빅데이터에 대한 통찰력을 제공하여 데이터의 활용 가치를 높이기 위해 공간빅데이터의 시각화가 주목받고 있다. 정보 시각화의 방법은 Matthias, Ben, 정보디자인교과서 등을 통하여 다양한 방법으로 정의 되어 있으나 공간빅데이터의 시각화는 방대한 양의 원시 데이터를 대상으로 하기 때문에 데이터의 조직화 과정을 거쳐야 하며 이를 통해 사용자에게 전달하려는 정보를 추출해야 하는 차이점이 있다. 추출된 정보는 특성에 따른 적합한 시각적 표현 방법을 사용해야 하며, 많은 양의 데이터를 시각적으로 표현하는 것은 사용자에게 정확한 정보를 제공 할 수 없으므로 필터링, 샘플링, 데이터 비닝, 클러스터링 등을 이용하여 데이터를 축소하여 표현하는 방법이 필요하다.

4차 산업혁명기 인공지능과 빅데이터 운용을 위한 개인정보 보호와 이용에 관한 연구 (A Study on the Protection and Utilization of Personal Information for the Operation of Artificial Intelligence and Big Data in the Fourth Industrial Revolution)

  • 최원상;이종용;신진
    • 융합보안논문지
    • /
    • 제19권5호
    • /
    • pp.63-73
    • /
    • 2019
  • 4차 산업혁명기에는 정보통신기술(ICT)의 비약적인 발전으로 사람과 사물로부터 정보를 수집하여 분석하고 가치를 창출하는 것이 가능하다. 그러나 사람을 대상으로 하는 정보의 수집은 법적으로나 제도적으로 많은 제한이 있다. 따라서 급변하는 사이버 안보환경에서 개인정보의 보호와 이용에 관한 심도 있는 연구가 필요하다. 본 연구의 목적은 4차 산업혁명기 인공지능(AI)과 빅데이터 운용을 위한 개인정보의 보호와 이용에 관한 패러다임의 전환을 모색하는 것이다. 이를 위한 연구의 구성은 제1장에서는 4차 산업혁명기 개인정보가 갖는 의미를 알아보고, 제2장에서는 선행연구 검토와 분석의 틀을 제시하였으며, 제3장에서는 주요 국가들의 개인정보의 보호와 이용을 위한 정책을 분석 한 후, 제4장에서는 4차 산업혁명기 개인정보 보호의 패러다임 변화 전망과 대응 방안을 고찰하였으며, 제5장에서는 개인정보의 보호와 이용을 위한 몇 가지 정책적 제언을 하였다.

빅데이터 분석을 통한 지방자치단체 정책이슈 도출 방법론 (Methodology of Local Government Policy Issues Through Big Data Analysis)

  • 김용진;김도영
    • 한국콘텐츠학회논문지
    • /
    • 제18권10호
    • /
    • pp.229-235
    • /
    • 2018
  • 본 연구의 목적은 효율적이고 효과적인 정책 발굴 과정에서 빅데이터의 활용이 점차 중요해지는 현실에서 지방자치단체의 정책 이슈 발굴에 빅데이터 분석을 활용하는 방안을 제시하는 데 있다. 이를 위하여 본 연구에서는 수원시를 대상으로 지난 3년간의 수원시 약 18만 건의 기사를 분석하여 정책 이슈를 발굴하였으며, 이를 IPA분석을 통해 정책의 우선순위를 평가하였다. 본 연구의 분석 결과는 신문 기사를 통한 반정형 빅데이터의 분석으로 전국의 주요 이슈와는 차별화된 지방자치단체의 차별화된 정책 이슈를 도출하는데 효과적임을 보였으며, 특히 도출된 정책 이슈들이 대부분 그 우선순위가 높은 것으로 평가되었다. 이처럼 본 연구에서 제시한 빅데이터 분석을 통한 정책 이슈 발굴의 방법론은 지방자치단체가 효율적인 정책 이슈를 도출하고 민의를 효과적으로 파악할 수 있음을 의미한다. 또한, 본 연구에서 제시한 방법론은 지방자치단체의 온라인 민원 자료, 주민 SNS 등 다양한 반정형, 비정형 빅데이터의 분석을 통한 정책 이슈 발굴에 적용이 가능할 것으로 기대된다.

하둡 분산 환경 기반의 데이터 수집 기법 연구 (A Study on the Data Collection Methods based Hadoop Distributed Environment)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제7권5호
    • /
    • pp.1-6
    • /
    • 2016
  • 최근 빅데이터 활용과 분석기술의 발전을 위하여 많은 연구가 이루어지고 있고, 빅데이터를 분석하기 위하여 처리 플랫폼인 하둡을 도입하는 정부기관 및 기업이 점차 늘어가고 있는 추세이다. 이러한 빅데이터의 처리와 분석에 대한 관심이 고조되면서 그와 병행하여 데이터의 수집 기술이 주요한 이슈가 되고 있으나, 데이터 분석 기법의 연구에 비하여 수집 기술에 대한 연구는 미미한 상황이다. 이에 본 논문에서는 빅데이터 분석 플랫폼인 하둡을 클러스터로 구축하고 아파치 스쿱을 통하여 관계형 데이터베이스로부터 정형화된 데이터를 수집하고, 아파치 플룸을 통하여 센서 및 웹 애플리케이션의 데이터 파일, 로그 파일과 같은 비정형 데이터를 스트림 기반으로 수집하는 시스템을 제안한다. 이러한 융합을 통한 데이터 수집으로 빅데이터 분석의 기초적인 자료로 활용할 수 있을 것이다.

지역관광 빅데이터 정책성과와 과제 -제주특별자치도를 사례로- (Policy Achievements and Tasks for Using Big-Data in Regional Tourism -The Case of Jeju Special Self-Governing Province-)

  • 고선영;정근오
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.579-586
    • /
    • 2021
  • 본 연구는 다양한 빅데이터를 지역관광 정책에 활용한 제주특별자치도의 사례를 토대로, 관광빅데이터의 활용성과와 과제를 제시하였다. 가장 큰 활용성과는 관광빅데이터를 통해 급변하는 관광트랜드와 관광업계의 동향을 시의성있고 구체적으로 파악할 수 있게 되었고, 기존 관광통계를 정교화하는데 활용할 수 있었다는 점이다. 여기서 더 나아가 제주는 빅데이터의 활용 범위를 관광 현상 이해의 수준을 넘어 실시간 맞춤형 서비스 플랫폼 구축까지 영역을 확장하였다. 이것이 가능했던 이유는 데이터 수집 및 분석 환경 구축과 산·관·학의 협력적 거버넌스가 조성되었기 때문이다. 향후 해결해야 할 과제는 첫째, 민간 데이터셋 위주의 분석으로 예산 의존적이라는 한계와 둘째, 스마트관광의 궁극적 목표인 개인맞춤형서비스 구축을 위한 개인수준 데이터 수집 인프라, 개인정보보호법 등의 제도적인 문제의 해결이다. 마지막으로, 데이터 분석과 데이터 연계에 도달하기까지의 전문성과 기술적 한계들이 남아 있다.

물류공동화 활성화를 위한 빅데이터 마이닝 적용 연구 : AHP 기법을 중심으로 (Study on the Application of Big Data Mining to Activate Physical Distribution Cooperation : Focusing AHP Technique)

  • 박영현;이재호;김경우
    • 무역학회지
    • /
    • 제46권5호
    • /
    • pp.65-81
    • /
    • 2021
  • The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.

머신러닝을 이용한 빅데이터 도메인 자동 판별에 관한 연구 (A Study of Big Data Domain Automatic Classification Using Machine Learning)

  • 공성원;황덕열
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.11-18
    • /
    • 2018
  • 본 연구는 빅데이터 품질 진단의 핵심 요소인 도메인 기반 품질 진단을 위한 도메인 자동 판별에 관한 연구다. 빅데이터의 가치와 활용도의 증가와 4차 산업혁명의 대두로, 법률, 의료, 금융 등 IT와 융합된 다양한 분야에서 빅데이터를 활용하여 새로운 가치를 창출하려는 노력을 진행중이다. 하지만, 신뢰도가 낮은 데이터에 기반한 분석은 과정과 결과 모두에서 치명적인 문제를 발생하며, 분석 결과에 따른 판단 또한 신뢰하기 어려워 진다. 이처럼 신뢰도가 높은 데이터의 필요성 또한 증가하였지만, 데이터의 품질 확보에 대한 연구와 그에 대한 결과는 미비하다. 본 연구는 데이터 품질 향상을 위한 진단 평가의 핵심적 요소인 도메인 기반 품질 진단에서, 수작업으로 진행되었던 도메인 판별 작업을 머신러닝을 이용하여 자동화 함으로써, 작업시간을 단축하는 것을 목표로 한다. 데이터 베이스에 저장된, 도메인이 판별되어 있는 데이터의 특성에 관한 정보들을 추출하여 변수화하고, 이를 머신러닝을 이용하여 도메인 판별을 자동화 한다. 이를 빅데이터 품질 진단에 활용하고, 품질 향상에 기여하도록 한다.