• Title/Summary/Keyword: Big Data Utilization

Search Result 388, Processing Time 0.031 seconds

Study of Policy on Seowon's Preservation·Support : Focusing on Big Data Analysis on Laws (한국 서원의 보존·지원 정책에 관한 연구 : 법률에 대한 빅데이터 분석을 중심으로)

  • Bang, Mee Young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.875-883
    • /
    • 2023
  • In Korea, the number of preservation and management entities to connect the traditional cultural heritage to next generations is rapidly decreasing. Building an infrastructure to pass on traditional cultural heritage to the next generation and to pay attention to the preservation and management of the next generation is important including the 'Seowon', a World Cultural Heritage listed by UNESCO. This study is based on the laws that regulates the preservation and support of traditional cultural assets and 'Seowon, through Big Data analysis techniques. The main keywords in each law were extracted, schematized, and a mutual Word Network was constructed and policy advice was derived. As policy advice, it is necessary to establish and implement policies to nurture and support businesses specialized in the region for the preservation·utilization, preservation·management and preservation·support of Seowons.

Big Data Analysis for Strategic Use of Urban Brands: Case Study Seoul city brand "I SEOUL U" (도시 브랜드의 전략적 활용을 위한 빅데이터 분석 : 서울시 도시 브랜드 "I SEOUL U" 사례)

  • Lim, Haewen
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.197-213
    • /
    • 2022
  • In this study, text mining analysis was performed on online big data for recognition and assessment of urban brand I Seoul U. To this end, TEXTOM, a processing program for data acquisition and analysis was used, and the 'I SEOUL U' keyword was selected as an analysis keyword. Keyword analysis shows the keywords associated with I Seoul U to be as follows: First, as a business and marketing term, keywords include pop-up store, gallery, co-branding, (festival, etc.), commodities, private companies and online. Second, as an event-related term, keywords include Han River, tree-planting day, tree planting, Hongdae, Christmas, Mapo, Jung-gu, Sejong University, and festival. Third, as a promotional term, keywords include robotics engineer Dr. Dennis Hong, Government, Art and Korea. In the N Gram analysis, as the city brand of Seoul, I Seoul U, in the public interest, was found to contribute to the commercial activities of private companies. In connection-oriented analysis, business and marketing, events, and promotions have been derived as categories. In matrix analysis, it was found that the products of the pop-up store are mainly developed, and products in the form of co-branding were being developed. In the topic modeling, a total of 10 topics were extracted and needs for commercial utilization and information for event festivals were mostly found.

A Study on Public Awareness of Landslide and Check Dam Using the Big Data Platform 'Hyean' (공공 빅데이터 플랫폼 '혜안'을 통한 산사태 및 사방댐 인식 분석)

  • Sohee Park;Min Jeng Kang;Song Eu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.687-698
    • /
    • 2022
  • Purpose: This study was conducted to understand the public awareness of landslide and check dams in 2015-2020 using the big data platform 'Hyean' and to confirm the utilization of this platform in disaster prevention areas. Method: The total amount, number of detection by period by media, and affirmative and negative trends of a search for 'landslide' and 'check dam' in 2015-2020 were analyzed using a keyword search of 'Hyean.' Result: There is significant lack of public awareness of check dam compared to landslide, and the trend is more noticeable in the conspicuous gap of data amount between the news and SNS media. The number and the timing of the search for 'landslide' coincided with the actual occurrence of landslide, while the detection of 'check dam' was less related to it. Relatively affirmative preception for the check dam is inferred, but it was difficult to confirm accurate statistical affirmative and negative trends in the disaster prevention field using 'Hyean.' Conclusion: Unlike the experts who expect positive public awareness of check dam, the statistic results show that the public awareness of the check dam as an effective countermeasure against landslide was extremely low. Active promotion of erosion control projects should be carried out first, and a balanced sample survey should accompany online and periodic field surveys. Since there is a limit to grasping the effective perception in the field of disaster prevention area using 'Hyean', it should be very cautious to establish local/governmental policies using it.

Draft Design of AI Services through Concept Extension of Connected Data Architecture (Connected Data Architecture 개념의 확장을 통한 AI 서비스 초안 설계)

  • Cha, ByungRae;Park, Sun;Oh, Su-Yeol;Kim, JongWon
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2018
  • Single domain model like DataLake framework is in spotlight because it can improve data efficiency and process data smarter in big data environment, where large scaled business system generates huge amount of data. In particular, efficient operation of network, storage, and computing resources in logical single domain model is very important for physically partitioned multi-site data process. Based on the advantages of Data Lake framework, we define and extend the concept of Connected Data Architecture and functions of DataLake framework for integrating multiple sites in various domains and managing the lifecycle of data. Also, we propose the design of CDA-based AI service and utilization scenarios in various application domain.

Data Quality Measurement on a De-identified Data Set Based on Statistical Modeling (통계모형의 정확도에 기반한 비식별화 데이터의 품질 측정)

  • Chun, Heuiju;Yi, Hyun Jee;Yeon, Kyupil;Kim, Dongrae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.553-561
    • /
    • 2019
  • In this study, the method of quality measurement for the statistical usefulness of de-identified data was examined in terms of prediction accuracy by statistical modeling. In the era of the 4th industrial revolution, effective use of big data is essential to innovation through information and communication technology, but personal information issues are constrained to actively utilize big data. In order to solve this problem, de-identification guidelines have been established and the possibility of actual re-identification of personal information has become very low due to the utilization of various de-identification methods. On the other hand, strong de-identification can have side effects that degrade the usefulness of the data. We have studied the quality of statistical usefulness of the de-identified data by KLT model which is a representative de-identification method, A case study was conducted to see how statistical accuracy of prediction is degraded by de-identification. We also proposed a new measure of data usefulness of the de-identified data by quantifying how much data is added to the de-identified data to restore the accuracy of the predictive model.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Analysis of news bigdata on 'Gather Town' using the Bigkinds system

  • Choi, Sui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.53-61
    • /
    • 2022
  • Recent years have drawn a great attention to generation MZ and Metaverse, due to 4th industrial revolution and the development of digital environment that blurs the boundary between reality and virtual reality. Generation MZ approaches the information very differently from the existing generations and uses distinguished communication methods. In terms of learning, they have different motivations, types, skills and build relationships differently. Meanwhile, Metaverse is drawing a great attention as a teaching method that fits traits of gen MZ. Thus, the current research aimed to investigate how to increase the use of Metaverse in Educational Technology. Specifically, this research examined the antecedents of popularity of Gather Town, a platform of Metaverse. Big data of news articles have been collected and analyzed using the Bigkinds system provided by Korea Press Foundation. The analysis revealed, first, a rapid increasing trend of media exposure of Gather Town since July 2021. This suggests a greater utilization of Gather Town in the field of education after the COVID-19 pandemic. Second, Word Association Analysis and Word Cloud Analysis showed high weights on education related words such as 'remote', 'university', and 'freshman', while words like 'Metaverse', 'Metaverse platform', 'Covid19', and 'Avatar' were also emphasized. Third, Network Analysis extracted 'COVID19', 'Avatar', 'University student', 'career', 'YouTube' as keywords. The findings also suggest potential value of Gather Town as an educational tool under COVID19 pandemic. Therefore, this research will contribute to the application and utilization of Gather Town in the field of education.

Performance Optimization Strategies for Fully Utilizing Apache Spark (아파치 스파크 활용 극대화를 위한 성능 최적화 기법)

  • Myung, Rohyoung;Yu, Heonchang;Choi, Sukyong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.

Feasibility of Economic Analysis of Riverfront Facility Based on Mobile Big Data (통신 빅데이터 기반 하천이용시설 사용성능 경제성평가기법개발)

  • Choi, Byeong Jun;Noh, Hee-Ji;Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2021
  • Riverfront facilities are river space facilities used by citizens for the rest and convenience. Recently, although the importance of efficient maintenance of riverfront facilities is increasing, damaging facilities cases are increasing due to frequent floods. Currently, the inspections and diagnosis of river space facilities are limited to the main flood control facilities. And the standards for the maintenance and management of the riverfront facilities are insufficient. Utilization survey, which is the standard for managing river space facilities, is also inefficient in terms of manpower consumption and economic feasibility. This study uses mobile big data to classify river usage and conducts a survey for usability of river facilities to derive economic evaluation for usage performance. In the future, if economical method system that considers safety, usability, and durability is conducted and demanding analysis for each convenience facility is evaluated, it is expected that the efficient maintenance of riverfront facilities is perfomed better and the use of rivers by citizens will further increase.

Designing a Platform Model for Building MyData Ecosystem (마이데이터 생태계 구축을 위한 플랫폼 모델 설계)

  • Kang, Nam-Gyu;Choi, Hee-Seok;Lee, Hye-Jin;Han, Sang-Jun;Lee, Seok-Hyoung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The Fourth Industrial Revolution was triggered by data-driven digital technologies such as AI and big data. There is a rapid movement to expand the scope of data utilization to the privacy area, which was considered only a protected area. Through the revision of the Data 3 Act, laws and systems were established that allow personal information to be freely transferred and utilized under their consent. But, it will be necessary to support the platform that encompasses the entire process from collecting personal information to managing and utilizing it. In this paper, we propose a platform model that can be applied to building mydata ecosystem using personal information. It describes the six essential functional requirements for building MyData platforms and the procedures and methods for implementing them. The six proposed essential features describe consent, sharing/downloading/ receipt of data, data collection and utilization, user authentication, API gateway, and platform services. We also illustrate the case of applying the MyData platform model to real-world, underprivileged mobility support services.