• 제목/요약/키워드: Big Data Mining

검색결과 691건 처리시간 0.033초

빅데이터를 활용한 폐교시설의 지표 개발에 관한 연구 -텍스트마이닝 기법을 중심으로- (A Study on the Development of the Use Index of Closed School Facilities Using Big Data -Focused on Text-Mining Techniques-)

  • 김재영;이종국
    • 교육녹색환경연구
    • /
    • 제18권2호
    • /
    • pp.1-11
    • /
    • 2019
  • 본 연구는 지속적으로 증가가 예상되는 폐교시설의 효율적인 활용을 위하여 활용지표의 개발을 통해 폐교 활용 시 객관적인 의사결정을 위한 목적을 가진다. 연구 단계는 크게 폐교 활용 예비지표 도출, 빅데이터를 활용한 최종지표 도출, 지표의 정량화 단계로 구분하여 진행하였으며, 최종적으로 지표를 정량화함으로써 객관화하였다. 향후 지표를 기준으로 시설에 적용 및 검증하고자 한다. 본 연구는 지금까지 폐교시설의 활용을 위한 계획 및 연구에 있어서 시도되지 않았던 빅데이터 분석기법을 적용한 것에 그 의의가 있다.

Agriculture Big Data Analysis System Based on Korean Market Information

  • Chuluunsaikhan, Tserenpurev;Song, Jin-Hyun;Yoo, Kwan-Hee;Rah, Hyung-Chul;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.217-224
    • /
    • 2019
  • As the world's population grows, how to maintain the food supply is becoming a bigger problem. Now and in the future, big data will play a major role in decision making in the agriculture industry. The challenge is how to obtain valuable information to help us make future decisions. Big data helps us to see history clearer, to obtain hidden values, and make the right decisions for the government and farmers. To contribute to solving this challenge, we developed the Agriculture Big Data Analysis System. The system consists of agricultural big data collection, big data analysis, and big data visualization. First, we collected structured data like price, climate, yield, etc., and unstructured data, such as news, blogs, TV programs, etc. Using the data that we collected, we implement prediction algorithms like ARIMA, Decision Tree, LDA, and LSTM to show the results in data visualizations.

A Keyword-Based Big Data Analysis for Individualized Health Activity: Focusing on Methodological Approach

  • 김한별;배근표;허준호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.540-543
    • /
    • 2017
  • It will be possible to solve some of the major issues in our society and economy with the emerging Big Data used across 21st century global digital economy. One of the main areas where big data can be quite useful is the medical and health area. IT technology is being used extensively in this area and expected to expand its application field further. However, there is still room for improvement in the usage of Big Data as it is difficult to search unstructured data contained in Big Data and collect statistics for them. This limits wider application of Big Data. Depending on data collection and analysis method, the results from a Big Data can be varied. Some of them could be positive or negative so that it is essential that Big Data should be handled adequately and appropriately adapting to a purpose. Therefore, a Big Data has been constructed in this study to applying Crawling technique for data mining and analyzed with R. Also, the data were visualized for easier recognition and this was effective in developing an individualized health plan from different angles.

효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구 (A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing)

  • 이준석
    • 디지털융복합연구
    • /
    • 제12권11호
    • /
    • pp.257-264
    • /
    • 2014
  • 효율적인 데이터베이스 마케팅을 위하여 고객들을 세분화하고, 새로운 지식을 탐색할 수 있는 데이터마이닝의 필요성이 증대되고 있다. 데이터마이닝 도구를 구축하기 위해서는 단계별 구현이 요구되어 지는데, 본 연구에서는 데이터마이닝을 위한 분산 환경에 적응 가능한 데이터 전처리 도구를 구성하였다. 기존의 데이터마이닝 도구인 앤서 트리, 클레멘타인, 엔터프라이즈 마이너, 캔싱턴, 웨카의 전처리 부분을 고찰하고, 분산 환경에서 효율적으로 사용할 수 있는 데이터 마이닝 전처리 도구를 구성하였다. 새로이 제안된 시스템은 엔터프라이즈 자바 빈즈와 XML을 기반으로 하였다.

Data Dictionary 기반의 R Programming을 통한 비정형 Text Mining Algorithm 연구 (A study on unstructured text mining algorithm through R programming based on data dictionary)

  • 이종화;이현규
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.113-124
    • /
    • 2015
  • 미리 선언된 구조를 이용하여 수집 저장된 정형적 데이터와는 달리 웹 2.0의 시대에서 일반 사용자들이 평상시에 사용하는 자연어 형태로 작성된 비정형 데이터 분석은 과거보다 훨씬 더 넓은 응용범위를 가지고 있다. 데이터 양이 폭발적으로 증가하고 있다는 특성뿐 만 아니라 인간의 감성이 그대로 표현된 특성을 가진 텍스트에서 의미 있는 정보를 추출하는 빅데이터 분석 기법을 텍스트마이닝(Text Mining)이라 하며 본 연구는 이를 주제로 하고 있다. 본 연구를 위해 오픈 소스인 통계분석용 소프트웨어 R 프로그램을 이용하였으며, 비정형 텍스트 문서를 웹 환경에서 수집, 저장, 전처리, 분석 작업과 시각화(Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis)작업 등의 과정에 관한 알고리즘 구현을 연구하였다. 특히, 연구자의 연구 영역 분석에 초점을 더욱 높이기 위해 Data Dictionary를 참조한 키워드 추출 기법을 사용하였다. 실제 사례에 적용한 R은 다양한 OS 구동, 일반적 언어와의 인터페이스 지원 등 통계 분석용 소프트웨어로써 매우 유용하다는 점을 발견할 수 있었다.

빅데이터 분석 기법을 활용한 모바일 CRM 설계 및 구현 (Design and Implementation of Mobile CRM Utilizing Big Data Analysis Techniques)

  • 김영일;양승수;이상순;박석천
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.289-294
    • /
    • 2014
  • 최근 기업에서 데이터 마이닝 기법을 이용한 CRM을 마케팅이나 새로운 기획에 활용하고 있다. 그러나 데이터 마이닝 기술은 전문지식이 필요하여 일반인의 접근이 어렵고 시간과 공간의 제약을 받게 된다. 본 논문에서는 이를 해결하기 위해 데이터 마이닝 기법을 적용한 Mobile CRM을 제안하였다. 이를 위해 기존 CRM 시스템의 구조를 분석하고 데이터 흐름과 형식을 정의 하였다. 또한 시스템 프로세스를 정의하여 데이터 마이닝 기법을 이용한 판매동향분석 알고리즘과 고객판매추천 알고리즘을 설계하였다. 제안 시스템에 대한 평가는 시나리오 테스트를 통해 정상 동작을 확인하였으며 기존 시스템과의 비교 검증을 실시하였다. 테스트 결과 기존 프로그램과 데이터 값이 일치하여 신뢰성을 확인하고 제안한 통계 테이블 조회를 통해 데이터 분석 시간을 감소시켜 신속성을 검증하였다.

팬데믹 시기의 패션 테크놀로지에 관한 시각 - 텍스트 마이닝과 내용 분석을 중심으로 - (Perspectives on Fashion Technology during the Pandemic Era - A Mixed Methods Approach Using Text Mining and Content Analysis -)

  • 김미경;임은혁
    • 한국의류산업학회지
    • /
    • 제24권5호
    • /
    • pp.545-556
    • /
    • 2022
  • To overcome the pandemic, a new strategy for innovation is in demand throughout the value chains of the fashion industry that emphasize the importance of fashion technology. Accordingly, as various viewpoints and fields of debate are unfolding to consider the direction of change led by fashion technology, it is necessary to make an active value judgment precedent by understanding the differences between various opinions. This study aims to derive keywords from fashion technology used during the pandemic, to infer the characteristics of each type of perspective and to understand their characteristics. For the research, this study combines text mining analysis and content analysis. Text mining analysis is used to find statistical patterns by collecting keywords from big data from online media, and content analysis is used to interpret the data qualitatively. After analyzing the results of this study, the following observations are made. First, the perspective of positive acceptance seeks to maximize the perception and sensory action of fashion through technology; this amplifies experience, an opportunity for innovation and efficiency. Second, critical vigilance highlights the side effects of radical changes in fashion technology, characterized by concerns about capital-centered polarization, threats to human rights, and infringement of creative thinking. Lastly, the perspective of gradual adoption is the gradual convergence of technologies, characterized by the pursuit of an appropriate balance.

Critical Assessment on Performance Management Systems for Health and Fitness Club using Balanced Score Card

  • Samina Saleem;Hussain Saleem;Abida Siddiqui;Umer Sheikh;Muhammad Asim;Jamshed Butt;Ali Muhammad Aslam
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.177-185
    • /
    • 2024
  • Web science, a general discipline of learning is presently at high demand of expertise with ideas to develop software-based WebApps and MobileApps to facilitate user or customer demand e.g. shopping etc. electronically with the access at their smartphones benefitting the business enterprise as well. A worldwide-computerized reservation network is used as a single point of access for reserving airline seats, hotel rooms, rental cars, and other travel related items directly or via web-based travel agents or via online reservation sites with the advent of social-web, e-commerce, e-business, from anywhere-on-earth (AoE). This results in the accumulation of large and diverse distributed databases known as big data. This paper describes a novel intelligent web-based electronic booking framework for e-business with distributed computing and data mining support with the detail of e-business system flow for e-Booking application architecture design using the approaches for distributed computing and data mining tools support. Further, the importance of business intelligence and data analytics with issues and challenges are also discussed.

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.

Data Mining Approach to Predicting Serial Publication Periods and Mobile Gamification Likelihood for Webtoon Contents

  • Jang, Hyun Seok;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.17-24
    • /
    • 2018
  • This paper proposes data mining models relevant to the serial publication periods and mobile gamification likelihood of webtoon contents which were either serialized or completed in platform. The size of the cartoon industry including webtoon takes merely 1% of the total entertainment contents industry in Korea. However, the significance of webtoon business is rapidly growing because its intellectual property can be easily used as an effective OSMU (One Source Multi-Use) vehicle for multiple types of contents such as movie, drama, game, and character-related merchandising. We suggested a set of data mining classifiers that are deemed suitable to provide prediction models for serial publication periods and mobile gamification likelihood for the sake of webtoon contents. As a result, the balanced accuracies are respectively recorded as 85.0% and 59.0%, from the two models.