The Sewol ferry catastrophe that took place on April 16 2014 was unprecedented in terms of its sociopolitical implications, which had reverberated throughout the Korean nation. Mindful of such distinct characteristics of the Sewol ferry catastrophe, this thesis looks into the salience of the agendas portrayed in Twitter and Portal News coverage on the disaster and the correlation between the attribute-specific agendas of the foregoing mediums by making use of the agenda rank order correlation method. Extraction and analysis of big data revealed that first, while the hypothesis that there were little difference in terms of salience among the main agendas between Twitter and Portal News was dismissed, the rank order correlation proved to be high as regards the main agendas on Twitter and Portal News. This signifies that Twitter agendas exert influence over those on Portal News. Next, and regarding the five main agendas on the incident, there existed differences in salience between the attribute-specific agendas of the two mediums, with low figures for corresponding rank order correlations. Such results signify that Twitter and Portal News have little influence over each other as regards their agenda rank order correlation.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.6
/
pp.580-586
/
2017
The establishment of big data service environment requires both cloud-based network technology and clustering technology to improve the efficiency of information access. These cloud-based networks and clustering environments can provide variety of valuable information in real-time, which can be an intensive target of attackers attempting illegal access. In particular, attackers attempting IP spoofing can analyze information of mutual trust hosts constituting clustering, and attempt to attack directly to system existing in the cluster. Therefore, it is necessary to detect and respond to illegal attacks quickly, and it is demanded that the security policy is stronger than the security system that is constructed and operated in the existing single system. In this paper, we investigate routing pattern changes and use them as detection information to enable active correspondence and efficient information service in illegal attacks at this network environment. In addition, through the step-by -step encryption based on the routing information generated during the detection process, it is possible to manage the stable service information without frequent disconnection of the information service for resetting.
The Fourth Industrial Revolution was triggered by data-driven digital technologies such as AI and big data. There is a rapid movement to expand the scope of data utilization to the privacy area, which was considered only a protected area. Through the revision of the Data 3 Act, laws and systems were established that allow personal information to be freely transferred and utilized under their consent. But, it will be necessary to support the platform that encompasses the entire process from collecting personal information to managing and utilizing it. In this paper, we propose a platform model that can be applied to building mydata ecosystem using personal information. It describes the six essential functional requirements for building MyData platforms and the procedures and methods for implementing them. The six proposed essential features describe consent, sharing/downloading/ receipt of data, data collection and utilization, user authentication, API gateway, and platform services. We also illustrate the case of applying the MyData platform model to real-world, underprivileged mobility support services.
Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.
Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
Journal of KIISE:Databases
/
v.36
no.6
/
pp.434-445
/
2009
Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.
The Journal of Korean Institute of Next Generation Computing
/
v.13
no.6
/
pp.7-20
/
2017
The advancement of cloud and big data and the considerable growth of traffic have increased the complexity and problems in the management inefficiency of existing networks. The software-defined networking (SDN) environment has been developed to solve this problem. SDN enables us to control network equipment through programming by separating the transmission and control functions of the equipment. Accordingly, several studies have been conducted to improve the performance of SDN controllers, such as the method of connecting existing legacy equipment with SDN, the packet management method for efficient data communication, and the method of distributing controller load in a centralized architecture. However, there is insufficient research on the control of SDN in terms of the quality of network-using applications. To support the establishment and change of the routing paths that meet the required network service quality, we require a mechanism to identify network requirements based on a contract for application network service quality and to collect information about the current network status and identify the violations of network service quality. This study proposes a method of identifying the quality violations of network paths through ontology to ensure the network service quality of applications and provide efficient services in an SDN environment.
Recent advances in large-scale data processing technologies such as big data, cloud computing, and artificial intelligence have increased the demand for high-performance storage devices in data centers and enterprise environments. In particular, the fast data response speed of storage devices is a key factor that determines the overall system performance. Solid state drives (SSDs) based on the Non-Volatile Memory Express (NVMe) interface are gaining traction, but new bottlenecks are emerging in the process of handling large data input and output requests from multiple hosts simultaneously. SSDs typically process host requests by sequentially stacking them in an internal queue. When long transfer length requests are processed first, shorter requests wait longer, increasing the average response time. To solve this problem, data transfer timeout and data partitioning methods have been proposed, but they do not provide a fundamental solution. In this paper, we propose a dual queue based scheduling scheme (DQBS), which manages the data transfer order based on the request order in one queue and the transfer length in the other queue. Then, the request time and transmission length are comprehensively considered to determine the efficient data transmission order. This enables the balanced processing of long and short requests, thus reducing the overall average response time. The simulation results show that the proposed method outperforms the existing sequential processing method. This study presents a scheduling technique that maximizes data transfer efficiency in a high-performance SSD environment, which is expected to contribute to the development of next-generation high-performance storage systems
This paper presents the implementation of a system that recommends empirical best routes based on classification of large trajectory data. As many location-based services are used, we expect the amount of location and trajectory data to become big data. Then, we believe we can extract the best empirical routes from the large trajectory repositories. Large trajectory data is clustered into similar route groups using Hadoop MapReduce framework. Clustered route groups are stored and managed by a DBMS, and thus it supports rapid response to the end-users' request. We aim to find the best routes based on collected real data, not the ideal shortest path on maps. We have implemented 1) an Android application that collects trajectories from users, 2) Apache Hadoop MapReduce program that can cluster large trajectory data, 3) a service application to query start-destination from a web server and to display the recommended routes on mobile phones. We validated our approach using real data we collected for five days and have compared the results with commercial navigation systems. Experimental results show that the empirical best route is better than routes recommended by commercial navigation systems.
Data mining techniques have been suggested to find efficiently meaningful and useful information. Especially, in the big data environments, as data becomes accumulated in several applications, related pattern mining methods have been proposed. Recently, instead of analyzing not only static data stored already in files or databases, mining dynamic data incrementally generated in a real time is considered as more interesting research areas because these dynamic data can be only one time read. With this reason, researches of how these dynamic data are mined efficiently have been studied. Moreover, approaches of mining representative patterns such as maximal pattern mining have been proposed since a huge number of result patterns as mining results are generated. As another issue, to discover more meaningful patterns in real world, weights of items in weighted pattern mining have been used, In real situation, profits, costs, and so on of items can be utilized as weights. In this paper, we analyzed weighted maximal pattern mining approaches for data generated incrementally. Maximal representative pattern mining techniques, and incremental pattern mining methods. And then, the application scenarios for analyzing the required commodity patterns in infants are presented by applying weighting representative pattern mining. Furthermore, the performance of state-of-the-art algorithms have been evaluated. As a result, we show that incremental weighted maximal pattern mining technique has better performance than incremental weighted pattern mining and weighted maximal pattern mining.
Park, Hyun-Kyu;Lee, Wan-Gon;Jagvaral, Batselem;Park, Young-Tack
Journal of KIISE
/
v.43
no.1
/
pp.87-95
/
2016
Recently, due to the development of the Internet and electronic devices, there has been an enormous increase in the amount of available knowledge and information. As this growth has proceeded, studies on large-scale ontological reasoning have been actively carried out. In general, a machine learning program or knowledge engineer measures and provides a degree of confidence for each triple in a large ontology. Yet, the collected ontology data contains specific uncertainty and reasoning such data can cause vagueness in reasoning results. In order to solve the uncertainty issue, we propose an RDFS reasoning approach that utilizes confidence values indicating degrees of uncertainty in the collected data. Unlike conventional reasoning approaches that have not taken into account data uncertainty, by using the in-memory based cluster computing framework Spark, our approach computes confidence values in the data inferred through RDFS-based reasoning by applying methods for uncertainty estimating. As a result, the computed confidence values represent the uncertainty in the inferred data. To evaluate our approach, ontology reasoning was carried out over the LUBM standard benchmark data set with addition arbitrary confidence values to ontology triples. Experimental results indicated that the proposed system is capable of running over the largest data set LUBM3000 in 1179 seconds inferring 350K triples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.