The 6th International Conference on Construction Engineering and Project Management
/
pp.276-279
/
2015
Along with the increase of the quantity of data in various industries, the construction industry has also developed various systems focusing on collecting data related to the construction performance such as productivity and costs achieved in construction job sites. Numerous researchers worldwide have been focusing on developing efficient methodologies to analyze such data. However, applications of such methodologies have shown serious limitations on practical applications due to lack of data and difficulty in finding appropriate analytic methodologies which were capable of implementing significant insights. With development of information technology, the new trend in analytic methodologies has been introduced and steeply developed with the new name of "big data analysis" in various fields in academia and industry. The new concept of big data can be applied for significant analysis on various formats of construction data such as structured, semi-structured, or non-structured formats. This study investigates preliminary application methods based on data collected from actual construction site. This preliminary investigation in this study expects to assess fundamental feasibility of big data analytic applications in construction.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권2호
/
pp.567-582
/
2014
The purpose of this study is to qualitatively identify the typologies and characteristics of the big data marketing strategy in major companies that are taking advantage of the big data business in Korea. Big data means piles accumulated from converging platforms such as computing infrastructures, smart devices, social networking and new media, and big data is also an analytic technique itself. Numerous enterprises have grown conscious that big data can be a most significant resource or capability since the issue of big data recently surfaced abruptly in Korea. Companies will be obliged to design their own implementing plans for big data marketing and to customize their own analytic skills in the new era of big data, which will fundamentally transform how businesses operate and how they engage with customers, suppliers, partners and employees. This research employed a Q-study, which is a methodology, model, and theory used in 'subjectivity' research to interpret professional panels' perceptions or opinions through in-depth interviews. This method includes a series of q-sorting analysis processes, proposing 40 stimuli statements (q-sample) compressed out of about 60 (q-population) and explaining the big data marketing model derived from in-depth interviews with 20 marketing managers who belong to major companies(q-sorters). As a result, this study makes fundamental contributions to proposing new findings and insights for small and medium-size enterprises (SMEs) and policy makers that need guidelines or direction for future big data business.
International Journal of Fuzzy Logic and Intelligent Systems
/
제14권2호
/
pp.122-129
/
2014
Effective information gathering and retrieval of the most relevant web documents on the topic of interest is difficult due to the large amount of information that exists in various formats. Current information gathering and retrieval techniques are unable to exploit semantic knowledge within documents in the "big data" environment; therefore, they cannot provide precise answers to specific questions. Existing commercial big data analytic platforms are restricted to a single data type; moreover, different big data analytic platforms are effective at processing different data types. Therefore, the development of a common big data platform that is suitable for efficiently processing various data types is needed. Furthermore, users often possess more than one intelligent device. It is therefore important to find an efficient preference profile construction approach to record the user context and personalized applications. In this way, user needs can be tailored according to the user's dynamic interests by tracking all devices owned by the user.
빅데이터 분석은 데이터의 양, 처리속도, 다양성 측면에서 데이터 마이닝과 달리 문제해결과 의사결정을 위해서는 새로운 도구를 필요로 한다. 많은 글로벌 IT기업들은 사용하기 쉽고 기능성이 우수한 모델링 능력을 가진 다양한 빅데이터 제품을 출시하고 있다. 빅데이터 패키지는 분석도구, 인프라, 플랫폼 형태로 하드웨어와 소프트웨어를 포함한 솔루션이다. 빅데이터의 수집, 저장, 분석, 시각화가 가능한 제품이다. 빅데이터 패키지는 업체별로 제품 종류가 많고 복잡한 기능을 가질 뿐만 아니라 선정에 있어서 전문 지식을 필요로 하며 일반적인 소프트웨어 패키지보다 그 중요성이 높기 때문에 의사결정 방법의 개발이 요구된다. 본 연구는 빅데이터 패키지 도입을 위한 의사결정지원방법을 제안하는 것이 목표이다. 문헌적 고찰을 통하여 빅데이터 패키지의 특징과 기능을 비교하고, 선정기준을 제안한다. 패키지 도입 타당성을 평가하기 위하여 비용과 혜택 각각을 목표노드로 하는 AHP 모델 및 선정기준을 목표노드로 하는 AHP 모델을 제안하고 이들을 결합하여 최적의 패키지를 선정하는 과정을 보인다.
It is essential that firm makes a rational and scientific decision making and creates a news value for the future direction. To do so, many firms attempt to collect meaningful data and find the filtered and refined implication for the better customer relationship and the active market drive through the various analytic tools. Among the possible IT solutions, utilization of 'Big Data' is becoming more attractive and necessary in such a way that it would help firms obtain the systemized and demanding information and facilitate their decision making process to keep up with the market needs. In this paper, it introduces the concepts and development of 'Big Data' recognized as a IT resource and solution under the rapidly changing firm environment. This study also presents the several firm cases using Big Data' and the Oracle's total data management and analytic solutions in order to support the application of 'Big Data'. Finally this paper provides a holistic viewpoint and realistic approach on use of 'Big Data' to create a new value.
정보기술 발전은 기업이 보유하고 있는 다양한 구조 및 비구조 데이터를 관리할 수 있게 하였다. 이러한 빅데이터 활용은 기업의 새로운 비즈니스 핵심가치로 평가 받고 있다. 본 연구에서는 빅데이터로 인해 더욱 중요하게 평가받는 데이터 자원이 기업 분석 활용에 미치는 영향을 연구하고자 한다. 최신 해외 보고서들을 살펴보면, 빅데이터 활용성과에 대한 실증 연구를 보여주고 있다. 이러한 해외 실증 연구와 비교하여 국내 기업의 빅데이터 활용 특성을 분석하고자 한다. 본 연구 결과는 향후 빅데이터 활용 기업에 적용 가능한 성숙모형 개발에 도움을 줄 수 있을 것이다.
정보 기술과 첨단 무선 네트워크 응용 기술의 급속한 발전과 더불어, 방대하고 다양한 형태의 데이터들이 시시각각 양산되고 있으며, 최근 빅 데이터 분석기술의 중요성과 가치는 점차 증대되고 있다. 과거에는 너무 방대하여 관리조차 힘들어 무용지물이던 빅 데이터는 데이터 수집 컴퓨팅 장비와 분석 도구의 발전을 통해 다양한 활용분야에서 작은 규모의 데이터로는 불가능했던 새로운 영감이나 가치를 추출해 내는 것이 가능하게 되었다. 하지만 현실 세계에서는 아직도 빅 데이터 대부분이 제대로 적절하게 분석되어 사용되지 못하고 사장되는 것이 사실이다. 결국, 빅 데이터에서 통찰력 습득과 새로운 가치 창출을 위한 전제 조건으로 효율적인 빅 데이터 처리를 위한 분석 기술의 확보가 중요하다고 할 수 있다. 본 논문에서는 이러한 빅 데이터를 보다 효율적으로 처리하고 원하는 관심 정보를 효과적으로 추출해 낼 수 있는 정밀한 분석기법과 처리 기술을 연구하고 이를 실제 적용하는 스마트 응용을 설계한다.
Journal of Information Technology Applications and Management
/
제26권5호
/
pp.57-65
/
2019
Recommendation Systems are information technologies that E-commerce merchants have adopted so that online shoppers can receive suggestions on items that might be interesting or complementing to their purchased items. These systems stipulate valuable assistance to the user's purchasing decisions, and provide quality of push service. Traditionally, Recommendation Systems have been designed using a centralized system, but information service is growing vast with a rapid and strong scalability. The next generation of information technology such as Cloud Computing and Big Data Environment has handled massive data and is able to support enormous processing power. Nevertheless, analytic technologies are lacking the different capabilities when processing big data. Accordingly, we are trying to design a conceptual service model with a proposed new algorithm and user adaptation on dynamic recommendation service for big data environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.1996-2011
/
2021
To understand a trend is to explore the intricate process of how something or a particular situation is constantly changing or developing in a certain direction. This exploration is about observing and describing an unknown field of knowledge, not testing theories or models with a preconceived hypothesis. The purpose is to gain knowledge we did not expect and to recognize the associations among the elements that were suspected or not. This generally requires examining a massive amount of data to find information that could be transformed into meaningful knowledge. That is, looking through the lens of big-data analytics with an inductive reasoning approach will help expand our understanding of the complex nature of a trend. The current study explored the trend of well-being in South Korea using big-data analytic techniques to discover hidden search patterns, associative rules, and keyword signals. Thereafter, a theory was developed based on inductive reasoning - namely the hook, upward push, and downward pull to elucidate a holistic picture of how big-data implications alongside social phenomena may have influenced the well-being trend.
The Journal of Asian Finance, Economics and Business
/
제10권2호
/
pp.109-121
/
2023
This study aims to address the literature gap by examining the direct relationship between big data analytics capability, marketing innovation, and organizational innovations. Additionally, this study would examine big data analytics capability as the antecedent for both innovation types and how these relationships influence firm performance. The research model is developed based on the integration of resource-based view and knowledge-based view theories. The quantitative method is used as the research methodology for this study. Based on a purposive sampling method, a total of 115 questionnaires were obtained from managers in star-rated hotels located in Malaysia. Partial least square structural equation modeling (PLS-SEM) is utilized for the data analysis. The result shows that big data analytics capability positively affects marketing and organizational innovations. The findings show that big data analytics capability and organizational innovation positively influence firm performance. Nonetheless, the result revealed that marketing innovation is not positively related to firm performance. The findings also indicate to hotel managers the importance of big data analytic capability and the resources required to build and develop this capability. The contributions from this study enrich the literature on big data and innovation, which is particularly limited in the hospitality and tourism context.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.