• 제목/요약/키워드: Bifidobacterium fermentation

검색결과 111건 처리시간 0.024초

쌀과 사과박 혼합물을 이용한 Bifidobacterium발효제품의 개발 (Bifidobacterium Fermentation of Rice and Apple Pomace Mixture)

  • 이주연;박종현;장학길;목철균
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.333-338
    • /
    • 1999
  • This study was aimed to develop a value-added fermented products from rice and apple pomace using Bifidobacterium fermentation. The Bifidobacterium fermentation system of the mixture of rice and apple pomace was developed, and the physicochemical properties of the products were investigated. After 4 different bifidobacteria were compared for their fermentation capability and sensory properties of the fermented product, Bifidobacterium FBD-13 and FBD-22 were selected as appropriate strains for the fermentation of saccharified rice solution(SRS). The optimum inoculation level was 2% and the optimum fermentation time was 42 hrs. When wet apple pomace(WAP) was added to SRS, it contributed to the improvement of sensory properties of the fermented products and the optimum mixing ratio was 40% WAP and 60% SRS in weight. For the fermentation of the mixture of WAP and SRS, Bifidobacterium FBD-27 and FBD-22 were selected as suitable strains.

  • PDF

환원제 첨가가 쌀당화액의 Bifidobacterium발효에 미치는 영향 (Effect of Reducing Agents on Bifidobacterium Fermentation of Saccharified Rice Solution)

  • 이주연;목철균;박종현;장학길
    • 한국미생물·생명공학회지
    • /
    • 제27권3호
    • /
    • pp.230-235
    • /
    • 1999
  • This study was intended to develop a new rice product by the fermentation of saccharified rice solution using Bifidobacterium and to select an appropriate reducing agent to provide the anaerobic condition for the growth of Bifidobacterium during fermentation. The enhancement of the growth of Bifidobacterium in saccharified rice solution was achieved by the treatment of reducing agents such as ascorbic acid and cysteine. The physical and chemical properties of the fermented product were evaluated, and the effect of the reducing agents were compared between ascorbic acid and cysteine. The fermented product with the addition of ascorbic acid shows the lower pH and the higher titratable acidity comparing the product with the addition of cysteine. This indicated that ascorbic acid was more appropriate reducing agent than cysteine for the fermentation of the saccharified rice solution. The number of viable Bifidobacterium in the fermented product with the addition of ascorbic acid(2.2$\times$108~3.4$\times$108CFU/ml) was greater than that with the addition of cysteine (8$\times$107~2.8$\times$108CFU/ml). Ascorbic acid supplement also contributed better sensory properties, such as flavor, taste and overall acceptibility than cysteine supplement did.

  • PDF

Assay of ${\beta}$-Glucosidase Activity of Bifidobacteria and the Hydrolysis of Isoflavone Glycosides by Bifidobacterium sp. Int-57 in Soymilk Fermentation

  • Jeon, Ki-Suk;Ji, Geun-Eog;Hwang, In-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.8-13
    • /
    • 2002
  • The isoflavone glycosides are hydrolyzed by ${\beta}$-glucosidase from gut microbes to the bioactive aglycones. However, the specific bacteria from the human intestinal tract that are involved in the metabolism of these compounds are not known. This study was undertaken to develop a fermented soymilk which converts isoflavones to the more bioactive aglycones form using a Bifidobacterium strain. The ${\beta}$-glucosidase activity of 15 Bifidobacterium strains were measured during cell growth. Among them, Bifidobacterium sp. Int-57 was selected for this study, because it has the highest ${\beta}$-glucosidase activity. Growth, acid development, ${\beta}$-glucosidase activity, and the hydrolysis of daidzin and genistin were investigated in four soymilks inoculated with Bifidobacterium sp. Int-57. After 12 h of fermentation, the counts of viable Bifidobacterium sp. Int-57 in all the soymilks reached a level of more than $10^8$ cfu/ml, which was then maintained. The pH of soymilks started to decrease rapidly after 6 h of fermentation and leveled off after 18 h. The titratable acidity of BL# 1 soymilk, BL#2 soymilk, and JP#l soymilk increased from 0.18 to 1.21, 1.15, and $1.08\%$ over the fermentation period, respectively. After 24 h of fermentation, the $\beta$-glucosidase activity in BL#1 soymilk, BL#2 soymilk, JP#l soymilk, and JP#2 soymilk increased to 59.528, 40.643, 70.844, and 56.962 mU/ml, respectively. The isoflavone glycosides, daidzin and genistin, in soymilks were hydrolyzed completely in the relatively short fermentation time of 18 h. These results show that Bifidobacterium sp. Int-57 can be used as a potential starter culture for developing fermented soymilk which has completely hydrolyzed isoflavone glycosides.

Bifidobacterium에 의한 당근발효 (Fermentation of Carrot Juice by Bifidobacterium)

  • 박소영;고영태;이주연;목철균;박종현;지근억
    • 한국식품과학회지
    • /
    • 제29권3호
    • /
    • pp.571-575
    • /
    • 1997
  • 본 연구에서는 당근을 원료로 하여 Bifidobacterium을 배양하여 발효하며 Bifidobacterium의 배양특성을 살펴보았다. Bifidobacterium의 다양한 균주를 $10^6\;CFU/mL$ 수준으로 접종하여 배양하였을 때 B. longum, B. adolescentis, B. infantis 균주들은 $10^8\;CFU/mL$ 이상으로 자랐고 B. bifidum 균주들은 약간 성장이 저조하여 $10^8\;CFU/mL$ 이하 수준으로 자랐다. 당근 이외의 다른 원료로서 포도, 사과, 오렌지, 복숭아, 배추, 오이 등에 배양하였을 때 복숭아, 오렌지 등에서는 배양이 양호하였으나 포도에서는 Bifidobacterium의 성장이 일어나지 않았다. L. acidophilus와 혼합 배양시 Bifidobacterium 단독 배양시보다 균의 증식이 저하되었고 배양 24시간 후부터 Bifidobacterium의 사멸이 현저하게 일어났다. Bifidobacterium 배양에 의하여 당근의 산미가 증가되며 관능성이 개선되는 것으로 나타났다. 따라서 Bifidobacterium을 이용한 당근 발효식품 개발은 Bifidobacterium균주의 증식에 의한 기능성 증가와 당근의 관능성 개선에 도움이 될 것으로 생각된다.

  • PDF

쌀 발효제품 제조를 위한 마크로파지활성 비피더스균의 선발 (Isolation of Macrophage-activating Bifidobacterium for the Manufacture of Fermented Rice Products)

  • 차성관;홍석산;지근억;목철균;박종현
    • 한국미생물·생명공학회지
    • /
    • 제27권6호
    • /
    • pp.509-514
    • /
    • 1999
  • Forty seven amylolytic Bifidobacterium strains were isolated on starch-containing agar medium from the faecal samples of the various age groups of Korean. From these amyloytic Bifidobacterium spp., two strains of KFRI 1535, identified temporarily as Bifidobacterium longum, and KFRI 1550, identified as Bifidobacterium breve, showed great macrophage-stimulating activity for the production of tumor necrosis factor-$\alpha$ and inteleukin-6. As the cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration increased the cytokine production increased, although in some strains the cytokine levels started to decline over cell concentration of $250\mu\textrm{g}$/ml. the strains which showed high cytokine-stimulating activity generally showed greater production of nitric oxide even though differences were less between strains. Selected Bifidobacterium strains were compared for their fermentation capability in saccharified rice solution and in apple pomace mixture.

  • PDF

Bifidobacterium longum KCTC 5734를 이용한 비배당체 이소플라본 생산 (Production of Aglycone Isoflavones by Bifidobacterium longum KCTC 5734)

  • 김진선;강순아;장기효
    • 동아시아식생활학회지
    • /
    • 제24권5호
    • /
    • pp.641-645
    • /
    • 2014
  • This study was performed to investigate the possibility of using three commercial bifidobacteria as a starter for soybean paste fermentation. In order to determine susceptibility to inhibition by high concentrations of salt in soybean paste, cell growth of three strains in sterilized soybean paste was analyzed. Bifidobacterium breve KCTC 5081 was the most resistant to salt, whereas Bifidobacterium bifidum KCTC 5082 showed low cell viability. Conversion efficiencies from glycoside isoflavone to aglycon isoflavone in soybean paste ranged from 11.3~28.6%, with Bifidobacterium longum KCTC 5734 the best strain. Therefore, B. longum KCTC 5734 may be used as a starter for Cheonggukjang fermentation, which is low-salt fermented soybean paste.

유산균과 Bifidobacterium longum을 혼합균으로 사용한 Flour Sourdough의 발효 특성 (Fermentation Characteristics of Flour Sourdough using Mixed Lactic Acid Bacteria and Bifidobacterium longum as Starters)

  • 채동진;이광석;장기효
    • 동아시아식생활학회지
    • /
    • 제20권5호
    • /
    • pp.743-750
    • /
    • 2010
  • The influence of various fermenting conditions using Saccharomyces cerevisiae, alone (Control, Single) and in combination with mixed lactic acid-producing bacteria (Combined 1, Mixed, Combined 2), including Bifidobacterium longum, Enterococcus faecium, and Lactobacillus acidophilus on flour sourdough preparation was examined. For the Combined 2 method, starters were incubated separately for 15 h, combined, and then further incubated for 10 h. Fermentation using Combined 2 improved the growth of mixed lactic acid-producing bacteria, but inhibited that of S. cerevisiae. This was also reflected in the extent of the pH reduction in sourdough produced in the Combined 2 step by these organisms. Among biochemical activities, $CO_2$ production and titratable acidity were increased by Combined 2, although the viable yeast counts were decreased. Aroma compounds in sourdough markedly varied according to fermentation conditions.

비피더스발효를 위한 쌀당화액 제조공정의 최적화 (Optimal Preparation of Saccharified Rice Solution for Bifidobacterium Fermentation)

  • 이주연;박종현;장학길;구동주;목철균
    • Applied Biological Chemistry
    • /
    • 제41권7호
    • /
    • pp.527-532
    • /
    • 1998
  • Bifidobacterium을 이용한 쌀발효제품의 개발을 위하여 쌀의 분쇄 정도와 호화, 당화공정에서의 최적조건을 찾고 당화에 사용되는 ${\alpha}-amylase$와 glucoamylase의 적정 첨가량과 당화시간을 조사하여 쌀 당화액 발효의 최적 조건을 확립하고자 하였다. 찰의 전처리 공정으로서 분쇄는 충격식 분쇄기를 사용하여 30초간 분쇄한 것이 당화 효율이 가장 우수하였으며, 당화공정에서는 호화 전 예비가온 후 호화시킨 것이 예비가온을 하지 않았을 경우에 비해 당화 후 당도가 높았다. 호화시간은 40분 처리시 당도가 가장 높았고, 당화 후 환원당량을 조사한 결과 ${\alpha}-amylase$ 0.135 unit/g rice powder와 glucoamylase 3.375 unit/g rice powder를 첨가하여 75분간 당화시 환원당량은 38.7 mg/ml로 가장 빠른 시간에 높은 환윈당을 갖게 되었다. Bifidobacterium을 이용하여 $37^{\circ}C$에서 48시간 동안 발효하면서 이화학적 특성과 Bifidobacterium수를 측정한 결과 쌀 당화액은 혐기성 Bifidobacterium의 까다로운 영양 요구성에 적합한 기질임을 확인하였다.

  • PDF

Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Jeon, Hye-Lin;Eom, Su Jin;Yoo, Mi-Young;Lim, Sang-Dong;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.427-434
    • /
    • 2016
  • Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk

  • You, Hyun Ju;Ahn, Hyung Jin;Kim, Jin Yong;Wu, Qian Qian;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.469-478
    • /
    • 2015
  • In spite of the reported probiotic effects, Bifidobacterium bifidum BGN4 (BGN4) showed no βglucosidase activity and failed to biotransform isoflavone glucosides into the more bioactive aglycones during soy milk fermentation. To develop an isoflavone-biotransforming BGN4, we constructed the recombinant B. bifidum BGN4 strain (B919G) by cloning the structural β-glucosidase gene from B. lactis AD011 (AD011) using the expression vector with the constitutively active promoter 919 from BGN4. As a result, B919G highly expressed β-glucosidase and showed higher β-glucosidase activity and heat stability than the source strain of the β-glucosidase gene, AD011. The biotransformation of daidzin and genistin compounds using the crude enzyme extract from B919G was completed within 4 h, and the bioconversion of daidzin and genistin in soy milk during fermentation with B919G also occurred within 6 h, which was much faster and higher than with AD011. The incorporation of this β-glucosidase-producing Bifidobacterium strain in soy milk could lead to the production of fermented soy milk with an elevated amount of bioavailable forms of isoflavones as well as to the indigenous probiotic effects of the Bifidobacterium strain.