• Title/Summary/Keyword: Bidirectional reflectance-distribution function

Search Result 30, Processing Time 0.025 seconds

Measurement System of Bidirectional Reflectance-distribution Function (양방향 반사율 분포함수 측정시스템)

  • Hwang, Ji-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2010
  • A theory of bidirectional reflectance-distribution function (BRDF), a newly developed BRDF measurement system, and a method for evaluating the uncertainty of BRDF measurements are presented. The BRDF measurement system which measures BRDF in a wavelength range of (380~1500) nm with an angle range of $(-75{\sim}75)^{\circ}$ was installed. The measurement uncertainties, consisting of correlated terms and uncorrelated terms, were evaluated for the BRDF measurement system, resulting in the relative expanded uncertainty less than 3% (k=2).

Retrieval of background surface reflectance with pre-running BRD components

  • Choi, Sungwon;Lee, Chang Suk;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Importance of remote sensing for surface is increased than past. So many countries try to many ways to retrieve surface reflectance. In this study, we study a Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. We apply BRDF using observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get Bidirectional Reflectance Distribution (BRD) coefficients for calculating scattering. And then we apply BRDF in the opposite direction with BRD coefficients and angular data to retrieve Background Surface Reflectance (BSR). The range of BSR is not over $0.4{\mu}m$ (blue), $0.45{\mu}m$ (red), $0.55{\mu}m$ (NIR). And for validation we compare BSR with VGT-S1, there are bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. As a result, we confirm that BSR is similar to VGT-S1.

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

A Study on the Influence of the Object's Reflectance on the Active Range Finder (물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

BRDF Measurement and Representation Framework (BRDF 측정 및 표현을 위한 프레임워크)

  • 김해동;최병태;박태용
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we present a simple framework to measure BRDF(Bidirectional Reflectance Distribution Function) values of objects and to render them using the values more realistically. There are lots of BRDF measurement methods, but the methods have been separated from the effective rendering of the values. Therefore, we suggest the framework which includes the BRDF measurement methods of objects and the effective rendering methods of the measured BRDF data. Before measuring the BRDFs, we do light sources analysis, camera calibration and display device characterization. After measuring them, we apply them to the characterized display device for rendering effectively and realistically.

  • PDF

High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model (BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정)

  • Hyun-Dong Moon;Bo-Kyeong Kim;Kyeong-Min Kim;Subin Choi;Euni Jo;Hoyong Ahn;Jae-Hyun Ryu;Sung-Won Choi;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1427-1435
    • /
    • 2023
  • Vegetation indices based on selected wavelength reflectance measurements are used to represent crop growth and physiological conditions. However, the anisotropic properties of the crop canopy surface can govern spectral reflectance and vegetation indices. In this study, we applied an ensemble of bidirectional reflectance distribution function (BRDF) models to high-resolution Sentinel-2 satellite imagery and compared the differences between correction results before and after reflectance. In the red and near-infrared (NIR) band reflectance images, BRDF-corrected outlier values appeared in certain urban and paddy fields of farmland areas and forest shadow areas. These effects were equally observed when calculating the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2). Furthermore, the outlier values in corrected NIR band were shown in pixels shadowed by mountain terrain. These results are expected to contribute to the development and improvement of BRDF models in high-resolution satellite images.

Realtime Fabric Rendering with Deformed Anisotropic Reflectance (이방성 반사의 변형을 통한 실시간 옷감 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.4
    • /
    • pp.81-90
    • /
    • 2010
  • In this paper, an efficient method is proposed to produce photorealistic images of woven fabrics without empirical data such as the measured BRDFs(bidirectional reflectance distribution functions). The proposed method is applicable both to ray tracer based offline renderers and to realtime applications such as games. The proposed method models the reflectance properties of woven fabric with alternating anisotropy and deformed MDF(microfacet distribution function). The procedural modeling of the yarn structure effectively and efficiently reproduces plausible rendering of woven fabric. The experimental results show the proposed method can be successfully applied to photorealistic rendering of diverse woven fabric materials even in interactive applications.

Atmospheric and BRDF Correction Method for Geostationary Ocean Color Imagery (GOCI) (정지궤도 해색탑재체(GOCI) 자료를 위한 대기 및 BRDF 보정 연구)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Palanisamy, Shanmugam;Deschamps, Pierre-Yves;Lee, Zhong-Ping
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • A new correction method is required for the Geostationary Ocean Color Imager (GOCI), which is the world's first ocean color observing sensor in geostationary orbit. In this paper we introduce a new method of atmospheric and the Bidirectional Reflectance Distribution Function(BRDF) correction for GOCI. The Spectral Shape Matching Method(SSMM) and the Sun Glint Correction Algorithm(SGCA) were developed for atmospheric correction, and BRDF correction was improved using Inherent Optical Property(IOP) data. Each method was applied to the Sea-Viewing Wide Field-of-view Sensor(SeaWiFS) images obtained in the Korean sea area. More accurate estimates of chlorophyll concentrations could be possible in the turbid coastal waters as well as areas severely affected by aerosols.