Browse > Article
http://dx.doi.org/10.7780/kjrs.2010.26.2.175

Atmospheric and BRDF Correction Method for Geostationary Ocean Color Imagery (GOCI)  

Min, Jee-Eun (Department of Ocean Engineering, Indian Institute of Technology Mardas)
Ryu, Joo-Hyung (Department of Ocean Engineering, Indian Institute of Technology Mardas)
Ahn, Yu-Hwan (Department of Ocean Engineering, Indian Institute of Technology Mardas)
Palanisamy, Shanmugam (Department of Ocean Engineering, Indian Institute of Technology Madras)
Deschamps, Pierre-Yves (Laboratoire d'Optique Atmospherique (LOA), Universite de Lille 1)
Lee, Zhong-Ping (Northern Gulf Institute, Mississippi State University)
Publication Information
Korean Journal of Remote Sensing / v.26, no.2, 2010 , pp. 175-188 More about this Journal
Abstract
A new correction method is required for the Geostationary Ocean Color Imager (GOCI), which is the world's first ocean color observing sensor in geostationary orbit. In this paper we introduce a new method of atmospheric and the Bidirectional Reflectance Distribution Function(BRDF) correction for GOCI. The Spectral Shape Matching Method(SSMM) and the Sun Glint Correction Algorithm(SGCA) were developed for atmospheric correction, and BRDF correction was improved using Inherent Optical Property(IOP) data. Each method was applied to the Sea-Viewing Wide Field-of-view Sensor(SeaWiFS) images obtained in the Korean sea area. More accurate estimates of chlorophyll concentrations could be possible in the turbid coastal waters as well as areas severely affected by aerosols.
Keywords
Atmospheric correction; BRDF correction; GOCI(Geostaionary Ocean Color Imager);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Moran, M. S., R. D. Jackson, P. N. Slater and P. M. Teillet, 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output, Remote Sensing of Environment, 41: 169-184.   DOI   ScienceOn
2 McClain, C. R., M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker and N. Kuring, 1998. Science quality SeaWiFS data for global biosphere research, Sea Technology, 39: 10-16.
3 Lee, Z. P., K. L. Carder and K. P. Du, 2004. Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance, Applied Optics, 43: 4,957-4,964.   DOI
4 박재익, 최규홍, 박상영, 유주형, 안유환, 박재우, 김병 수, 2005. 통신해양기상위성에서의 태양광 반사 점(sun-glint) 위치예측, 한국항공우주학회지, 22(3): 263-272.
5 Lee, Z. P., A. Weidemann, J. Kindle, R. Arnone, K. L. Carder and C. Davis, 2007. Euphotic zone depth: Its derivation and implication ot oceancolor remote sensing, Journal of Goephysical Research, 112, C03009, doi:10.1029/2006JC003802.
6 Gordon, H. R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm, Applied Optics, 33: 443- 452.   DOI   ScienceOn
7 Gould, R. W. and R. A. Arnone, 2002. Coastal optical properties estimated from airborne sensors. Reply to the comments by Hu and Carder, Remote Sensing of Environment, 79: 138-142.   DOI   ScienceOn
8 Koepke, P., 1984. Effective reflectance of oceanic whitecaps, Applied Optics, 23: 1,816-1,824.   DOI
9 Lavender, S. J., M. H. Pinkerton, G. F. Moore, J. Aiken and D. Blondeau-Patissier, 2005. Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters, Continental Shelf Research, 25: 539-555.   DOI   ScienceOn
10 Chavez, P. S., 1996. Image-based atmospheric corrections-Revisited and improved. Photogrammetry Engineering and Remote Sensing, 62: 1,025-1,036.
11 Ruddick, K. G., F. Ovidio and M. Rijkeboer, 2000. Atmospheric correction of SeaWiFS imagery for turbid and inland waters, Applied Optics, 39: 897-913.   DOI
12 Gordon, H. R., D. K. Clark, J. L. Muller and W. A. Hovis, 1980. Phytoplankton pigments from the Nimbus-7 coastal Zone Color Scanner: Comparisons with surface measurements, Science, 210: 63-66.   DOI
13 Wang, M., 1999. A sensitivity study of the SeaWiFS atmospheric correction algorithm: Effects of spectral band variations, Remote Sensing of Environment, 67: 348-359.   DOI   ScienceOn
14 Wang, M. and W. Shi, 2005. Estimation of ocean contribution at the MODIS nearinfrared wavelengths along the east coast of the U.S.: Two case studies, Geophysical Research Letters, 32, L13606, doi:10.1029/2005GL022917.   DOI
15 Wang, M., K. D. Knobelspiesse, and C. R. McClain, 2005. Study of the Sea-Viewing Wide Fieldof- View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products, Journal of Geophysical Research, 110, D10S06, doi:10.1029/2004JD004950.
16 Wu, J., D. Wang and M. E. Bauer, 2005. Imagebased atmospheric correction of QuickBird imagery of Minnesota cropland, Remote Sensing of Environment, 99: 315-325.   DOI   ScienceOn
17 Steinmetz, F., P. Y. Deschamps and D. Ramon, 2008. Sun glint atmospheric correction applied to GOCI, Final report for GOCI project, Jan. 26. 2009, HYGEOS, centre d'Innovation CIEL, Villeneuve d'Ascq, France.
18 Stumpf, R. P., R. A. Arnone, R. W. Gould, P. M. Martinolich and V. Ransibrahmanakul, 2003. A partially coupled ocean.atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS Postlaunch Technical Report Series, Vol. 22, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, Eds., p51.59, NASA Goddard Space Flight Center, Greenbelt, Maryland.
19 Shi, W. and M. Wang, 2009. An assessment of the black ocean pixel assumption for MODIS SWIR bands, Remote Sensing of Environment, 113: 1,587-1,597.   DOI
20 Shanmugam, P. and Y. H. Ahn, 2007. New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imagery in complex coastal waters, Journal of Optics A:Pure and Applied Optics, 9: 511-530.   DOI   ScienceOn
21 Robinson, 2000. Atmospheric correction of satellite ocean color imagery: the black pixel assumption, Applied Optics, 39: 3,582-3,591.   DOI
22 Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney and S. A. Macomber, 2000. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?, Remote Sensing of Environment, 75: 230-244.
23 Morel, A. and J. M. Andre, 1991. Pigment distribution and primary production in the Western Mediterrnean as derived and modeled from Coastal Zone Color Scanner observations, Journal of Geophysical Research, 96C: 12,685-12,698.
24 Morel A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: a reappraisal, Journal of Geophysical Research, 106(C4): 7,163- 7,180.   DOI
25 McClain, C. R., S. B. Hooker, G. C. Feldman and P. Bontempi, 2006. Satellite data for ocean biology, biogeochemistry, and climate research, in Eos, Transactions, American Geophysical Union, 87: 337-343.
26 Morel, A., Antoine, D. and Gentili, B., 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function, Applied Optics, 41: 6,289-6, 306.   DOI
27 Morel, A. and Gentili, B., 1993. Diffuse reflectance of oceanic waters (2): Bi-directional aspects, Applied Optics, 32: 6,864-6,879.   DOI
28 Morel, A. and Gentili, B., 1996. Diffuse reflectance of oceanic waters, III, Implications of bidirectionality for the remote sensing problem, Applied Optics, 35: 4,850-4,862.   DOI
29 McClain, C. R., G. C. Feldman and S. B. Hooker, 2004. An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series, Deep-Sea Research. Part 2. Topical Studies in Oceanography, 51: 5-42.   DOI   ScienceOn