• Title/Summary/Keyword: Bidirectional optical amplifier

Search Result 13, Processing Time 0.019 seconds

Performance Evaluation of Bidirectional Optical Amplifiers for Amplified Passive Optical Network Based on Broadband Light Source Seeded Optical Sources

  • Kang, Byoung-Wook;Kim, Chul-Han
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.4-8
    • /
    • 2011
  • We have evaluated the performances of bidirectional optical amplifiers which were suited for the cost-effective implementation of amplified bidirectional passive optical networks (PONs). First, we measured the maximum gains of two simple bidirectional optical amplifiers implemented without using any optical components for the suppression of reflected signals. From the results, the maximum gains of two simple bidirectional amplifiers with a broadband light source (BLS) seeded optical source were limited to be 27 dB due to the reflection-induced in-band crosstalk, when the reflectance coefficients were measured to be -33 dB in both directions. Then, we have also implemented a bidirectional optical amplifier with two band splitters for the amplified bidirectional PON where the two different wavelength bands were allocated to the downstream and upstream signals transmission. In our measurement, we confirmed that the maximum gain of bidirectional optical amplifier with two band splitters could be increased to more than 30 dB owing to the efficient suppression of in-band crosstalk.

An All-Optical Gain-Controlled Amplifier for Bidirectional Transmission

  • Choi, Bo-Hun;Hong, Kyung-Jin;Kim, Chang-Bong;Won, Yong-Hyub
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A novel all-optical gain-controlled (AOGC) bidirectional amplifier is proposed and demonstrated in a compact structure. The AOGC function using fiber Bragg grating (FBG) pairs controls both directional signals independently, and combinations of optical interleavers and isolators suppress Rayleigh backscattering (RB) noise. The amplifier achieves high and constant gain with a wide dynamic input signal range and low noise figure. The performance does not depend on the input signal conditions, whether static-state or transient signals, or whether there is symmetric or asymmetric data traffic on bidirectional transmission. Transmission comparison experiments between invariable symmetrical and random variable asymmetric bidirectional data traffic verify that the all-optical gain control and bidirectional amplification functions are successfully combined into this proposed amplifier.

  • PDF

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

  • Kang, Byoung-Wook;Kim, Chul-Han
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • We demonstrated the feasibility of an amplified wavelength-division multiplexed passive optical network (WDM-PON) architecture based on broadband light source (BLS) seeded optical sources and a novel bidirectional reach extender. Our bidirectional reach extender could provide an amplification of both downstream and upstream signals as well as a BLS output for the upstream WDM signal generation. An error-free 1.25 Gb/s signal transmission over a 100-km long single-mode fiber was achieved in a bidirectional WDM-PON using BLS seeded reflective semiconductor optical amplifier (RSOA) sources.

Demonstration of RSOA based Bidirectional WDM-POM by using Suppressed Optical Carrier Modulation (RSOA기반 반송파 억제된 광변조를 이용한 양방향 WDM-PON 구현)

  • Kim, Dong-Hyeon;Lee, Dae-Won;Won, Young-Wuk;Park, Soo-Jin;Han, Sang-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.809-814
    • /
    • 2007
  • In this paper, we proposed new method of a bidirectional WDM-PON transmission using suppressed optical carreir(SOC) and reflective semi-conductor optical amplifier(RSOA) based on WDM-PON. while LiNbO3 mach zehnder modulator(LN-MZM) generates 5GHz modulated SOC for uplink at central office(CO), RSOA at CO modulates the downstream data. At optical network units(ONUs), Another RSOA modulates the SOC light source for uplink at ONU and uplink data are up-converted to the 5 GHz already modulated SOC using LN-MZM.

Bidirectional 1.25-Gbps WDM-PON with Broadcasting Function Using A Fabry-Perot Laser Diode and RSOA

  • Pham, Thang T.;Kim, Hyun-Seung;Won, Yong-Yuk;Han, Sang-Kook
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.359-363
    • /
    • 2008
  • A novel WDM-PON system delivering bidirectional 1.25-Gbps data and broadcasting data is proposed. A subcarrier signal modulates optical carriers of a Fabry-Perot-laser-diode based broadband light source to broadcast to all users. Reflective semiconductor optical amplifiers are used as modulators for the baseband data at both the optical line terminal and the remote optical network unit for a channel. Bit error rate and error vector magnitude were measured to demonstrate the proposed scheme.

Physical Media Dependent Prototype for 10-Gigabit-Capable PON OLT

  • Kim, Jongdeog;Lee, Jong Jin;Lee, Seihyoung;Kim, Young-Sun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.245-252
    • /
    • 2013
  • In this work, we study the physical layer solutions for 10-gigabit-capable passive optical networks (PONs), particularly for an optical link terminal (OLT) including a 10-Gbit/s electroabsorption modulated laser (EML) and a 2.5-Gbit/s burst mode receiver (BM-Rx) in a novel bidirectional optical subassembly (BOSA). As unique features, a bidirectional mini-flat package and a 9-pin TO package are developed for a 10-gigabit-capable PON OLT BOSA composed of a 1,577-nm EML and a 1,270-nm avalanche photodiode BM-Rx, including a single-chip burst mode integrated circuit that is integrated with a transimpedance and limiting amplifier. In the developed prototype, the 10-Gbit/s transmitter and 2.5-Gbit/s receiver characteristics are evaluated and compared with the physical media dependent (PMD) specifications in ITU-T G.987.2 for XG-PON1. By conducting the 10-Gbit/s downstream and 2.5-Gbit/s upstream transmission experiments, we verify that the developed 10-gigabitcapable PON PMD prototype can operate for extended network coverage of up to a 40-km fiber reach.

450 Gbps Low-cost Intensity Modulation with Direct Detection (IM/DD) Wave Length Division Multiplexing (WDM-PON) for 5G Fronthaul

  • Kawan Faiq Ahmed;Asaad Mubdir Jassim Al-Hindawi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3310-3329
    • /
    • 2023
  • This work designs an eighteen-channel bidirectional Intensity Modulation with Direct Detection (IM/DD) Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) system. The proposed system meets the requirement of the ITU-T 5G fronthaul link suggested design in G-series Recommendations-Supplement 66. The newly designed system, with a 25Gb/s/λ data rate (450Gbps as a system capacity), has been tested and simulated using OptiSystem V.19 software. The system has been evaluated by the BER with respect to variable the optical span and CW laser power. Based on the ITU-T recommendations, the simulation results demonstrate that this system might be used as an F1 and as an Fx 5G fronthaul link for functional split choices starting from options 1 to 7a. These options are required under 25Gbps/λ for each upstream and downstream link direction. Furthermore, the proposed system utilized a bidirectional single-mode optical fiber within short optical spans of up to 10 km. The proposed system is characterized by a low-cost, simple, DSP-free and amplifier-free system with a reasonable system capacity.

The Optical Filtering Effect of a RSOA-based Broadband Light Source in a Bidirectional WDM-PON System (파장분할 다중화 수동광 네트워크에서 적용된 반사형 반도체 증폭기 기반의 광역선폭 광원의 광필터 특성 의존성)

  • Choi, Bo-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.122-128
    • /
    • 2011
  • The AWG-filtering effect was investigated on a bidirectional 100-GHz-channel-spacing WDM-PON link using spectrum-sliced and RSOA-amplified light sources for downstream signals and a wavelength reuse technique for upstream signals. Signal performances of three different filtering AWGs, including Gaussian, trapezoidal, and rectangular types, were compared on link transmission with fiber nonlinear effects. As an extinction ratio of a downstream signal varied, the effect for both directional signals was analyzed and optimized. It was found that there was an optimal pass bandwidth of an AWG for the balance between relative intensity noise decrement and cross phase modulation noise increment as the bandwidth got wider.

A 240 km Reach DWDM-PON of 8-Gb/s Capacity using an Optical Amplifier

  • Kim, Min-Hwan;Lee, Sang-Mook;Mun, Sil-Gu;Lee, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.93-96
    • /
    • 2007
  • We demonstrate a 240 km reach DWDM-PON at 8-Gb/s capacity based on wavelength-locked Fabry-Perot laser diodes and a bidirectional EDFA. We achieve a packet-error-free transmission in both the 64 upstream and 64 downstream channels, guaranteeing a 125 Mb/s symmetric data rate per user. There is no noticeable dispersion penalty. The power penalty due to the crosstalk induced by the DWDM transmission and detuning between AWGs is less than 1.2 dB, when the detuning is within ${\pm}0.12 nm$.

A Study of the Output Characteristics of a 1-kW-class Narrow-bandwidth PM Fiber Laser Depending on Its Pumping Structure (펌핑 구조에 따른 1 kW급 협대역 편광 유지 광섬유 레이저의 출력 특성 연구)

  • Kim, Tae Hyoung;Jeong, Seong Mook;Kim, Ki Hyuck;Lee, Sung Hun;Yang, Hwan Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.187-194
    • /
    • 2021
  • This paper presents a study of laser output characteristics. We fabricated a MOPA (master oscillator power amplifier)-type high-power, narrowbandwidth fiber laser with a bidirectional pumping configuration in its main amplifier. As signal beams, light sources with bandwidths of 3 GHz and 10 GHz-phase-modulated through a PRBS (pseudo-random binary sequence)-were used interchangeably. Furthermore, the characteristics of the SBS (stimulated Brillouin scattering) were analyzed using a signal beam with 3 GHz bandwidth, by adjusting the forward to backward pumppower ratio. Moreover, the characteristics of the transverse mode instability were analyzed by adjusting the forward to backward pump-power ratio, using a signal beam with 10-GHz bandwidth. Finally, the output power from 10 GHz bandwidth was amplified to more than 1 kW using a forward to backward pump-power ratio of 1.6. The beam quality M2 was measured to be approximately 1.36, and the optical-to-optical efficiency was 80% at maximum output power.