Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.4.187

A Study of the Output Characteristics of a 1-kW-class Narrow-bandwidth PM Fiber Laser Depending on Its Pumping Structure  

Kim, Tae Hyoung (Laser R&D, LIGNex1)
Jeong, Seong Mook (Laser R&D, LIGNex1)
Kim, Ki Hyuck (Laser R&D, LIGNex1)
Lee, Sung Hun (Laser R&D, LIGNex1)
Yang, Hwan Seok (Laser R&D, LIGNex1)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.4, 2021 , pp. 187-194 More about this Journal
Abstract
This paper presents a study of laser output characteristics. We fabricated a MOPA (master oscillator power amplifier)-type high-power, narrowbandwidth fiber laser with a bidirectional pumping configuration in its main amplifier. As signal beams, light sources with bandwidths of 3 GHz and 10 GHz-phase-modulated through a PRBS (pseudo-random binary sequence)-were used interchangeably. Furthermore, the characteristics of the SBS (stimulated Brillouin scattering) were analyzed using a signal beam with 3 GHz bandwidth, by adjusting the forward to backward pumppower ratio. Moreover, the characteristics of the transverse mode instability were analyzed by adjusting the forward to backward pump-power ratio, using a signal beam with 10-GHz bandwidth. Finally, the output power from 10 GHz bandwidth was amplified to more than 1 kW using a forward to backward pump-power ratio of 1.6. The beam quality M2 was measured to be approximately 1.36, and the optical-to-optical efficiency was 80% at maximum output power.
Keywords
Bi-directional pumping; Fiber laser; Stimulated Brillouin scattering; Transverse mode instability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 0904123 (2014).
2 D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).   DOI
3 T. J. Wagner, "Fiber laser beam combining and power scaling progress, air force research laboratory laser division," Proc. SPIE 8237, 823718 (2012).
4 J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, "2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source," Appl. Opt. 58, 6251-6256 (2019).   DOI
5 N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition," Opt. Lett. 41, 3964-3967 (2016).   DOI
6 B. Anderson, A. Flores, R. Holten, and I. Dajani, "Comparison of phase modulation schemes for coherently combined fiber amplifiers," Opt. Express 23, 27046-27060 (2015).   DOI
7 R. Engelbrecht, J. Hagen, and M. Schmidt, "SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density," Proc. SPIE 5777, 795-798 (2005).
8 C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012).   DOI
9 B. G. Ward, "Maximizing power output from continuous-wave single-frequency fiber amplifiers," Opt. Lett. 40, 542-545 (2015).   DOI
10 R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).   DOI
11 A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014).   DOI
12 J. D. Marconi, J. M. C. Boggio, and H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett. 40, 1213-1214 (2004).   DOI
13 T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011).   DOI
14 C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schroter, H. Bartelt, and M. Duparre, "Mode resolved bend loss in fewmode optical fibers," Opt. Express 21, 3170-3181 (2013).   DOI
15 C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser system," Opt. Express 20, 440-451 (2012).   DOI
16 B. Ward, C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express 20, 11407-11422 (2012).   DOI
17 A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011).   DOI
18 M. N. Zervas, "Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing and fiber mechanical reliability," Proc. SPIE 10512, 1051205 (2018).
19 S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013).   DOI
20 R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly-polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photonics Res. 3, 86-93 (2015).   DOI
21 C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, "Diodepumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier," Opt. Lett. 41, 5202-5205 (2016).   DOI
22 J. Lee, K. H. Lee, H. Jeong, D. J. Kim, J. H. Lee, and M. Jo, "A study of the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers," Korean J. Opt. Photon. 31, 7-12 (2020).   DOI
23 S. Jeong, K. Kim, T. Kim, S. Lee, H. Yang, J. Lee, K. H. Lee, J. H. Lee, and M.-S. Jo, "All-fiber 1.5-kW-class single-mode Yb-doped polarization-maintained fiber laser with 10-GHz linewidth," Korean J. Opt. Photon. 31, 223-230 (2020).   DOI
24 A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010).   DOI
25 D.-H. Kim, Y.-S. Lee, M.-W. Jeong, S.-M. Lee, K.-H. Kim, J.-H. Lee, K. Park, and Y. Jeong, "Efficiency and output power analysis in high power fiber laser," in Proc. KIMST General Academic Conference (Jeju, Korea, Jun. 2018), pp. 967-968.
26 K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 89611R (2014).   DOI
27 I. Dajani, C. Vergien, C. Robin, and C. Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009).   DOI
28 K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express 21, 1944-1971 (2013).   DOI
29 R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength," J. Opt. 17, 045504 (2015).   DOI
30 V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013).   DOI
31 N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, "Up to 2.5 kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffractionlimited fiber amplifiers in all-fiber format," Proc. SPIE 10512, 105120E (2018).
32 F. Beier, M. Plotner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities," Opt. Lett. 42, 4311-4314 (2017).   DOI
33 M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, "Al/Ge co-doped large mode area fiber with high SBS threshold," Opt. Express 15, 8290-8299 (2007).   DOI
34 Q. Chu, H. Lin, C. Tang, F. Jing, and X. Tang, "Spectral evolution and stimulated Brillouin scattering suppression in phasemodulated fiber amplifier," J. Phys. Commun. 2, 045022 (2018).   DOI
35 M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Opt. Express 15, 3236-3246 (2007).   DOI
36 C. Shi, R. T. Su, H. W. Zhang, B. L. Yang, X. L. Wang, P. Zhou, X. J. Xu, and Q. S. Lu, "Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes," IEEE Photonics J. 9, 1502910 (2017).
37 C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).