DOI QR코드

DOI QR Code

A Study of the Output Characteristics of a 1-kW-class Narrow-bandwidth PM Fiber Laser Depending on Its Pumping Structure

펌핑 구조에 따른 1 kW급 협대역 편광 유지 광섬유 레이저의 출력 특성 연구

  • Received : 2021.02.04
  • Accepted : 2021.05.24
  • Published : 2021.08.25

Abstract

This paper presents a study of laser output characteristics. We fabricated a MOPA (master oscillator power amplifier)-type high-power, narrowbandwidth fiber laser with a bidirectional pumping configuration in its main amplifier. As signal beams, light sources with bandwidths of 3 GHz and 10 GHz-phase-modulated through a PRBS (pseudo-random binary sequence)-were used interchangeably. Furthermore, the characteristics of the SBS (stimulated Brillouin scattering) were analyzed using a signal beam with 3 GHz bandwidth, by adjusting the forward to backward pumppower ratio. Moreover, the characteristics of the transverse mode instability were analyzed by adjusting the forward to backward pump-power ratio, using a signal beam with 10-GHz bandwidth. Finally, the output power from 10 GHz bandwidth was amplified to more than 1 kW using a forward to backward pump-power ratio of 1.6. The beam quality M2 was measured to be approximately 1.36, and the optical-to-optical efficiency was 80% at maximum output power.

본 논문에서는 주 증폭기가 양방향 펌핑 방식인 MOPA (master oscillator power amplifier) 협대역 고출력 광섬유 레이저를 제작하였으며, 제작된 레이저의 출력 특성을 연구하였다. 이터븀이 도핑된 코어 25 ㎛, 클래드 400 ㎛ 편광 유지 광섬유를 사용하여 주 증폭부를 제작하였으며, 신호 광원은 PRBS (pseudo-random binary sequence) 신호에 의해 위상 변조된 3 GHz, 10 GHz의 선폭을 갖는 광원을 사용하였다. 3 GHz의 선폭을 가진 신호 광원을 이용하여 순방향과 역방향 펌프 비율을 조절하며 SBS (stimulated Brillouin scattering) 특성을 분석하였다. 10 GHz의 선폭을 가진 신호 광원을 이용하여 주 증폭기의 펌핑 비율에 따른 TMI 특성을 분석하였다. 순방향 및 역방향 펌프 비율을 1.6:1로 입사시켰을 때 주 증폭기의 출력을 1 kW까지 증폭하였으며, 기울기 효율과 빔 품질(M2)은 각각 80%, 1.36으로 측정되었다.

Keywords

References

  1. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 0904123 (2014).
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  3. J. Lee, K. H. Lee, H. Jeong, M. Park, J. H. Seung, and J. H. Lee, "2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source," Appl. Opt. 58, 6251-6256 (2019). https://doi.org/10.1364/AO.58.006251
  4. T. J. Wagner, "Fiber laser beam combining and power scaling progress, air force research laboratory laser division," Proc. SPIE 8237, 823718 (2012).
  5. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition," Opt. Lett. 41, 3964-3967 (2016). https://doi.org/10.1364/OL.41.003964
  6. B. Anderson, A. Flores, R. Holten, and I. Dajani, "Comparison of phase modulation schemes for coherently combined fiber amplifiers," Opt. Express 23, 27046-27060 (2015). https://doi.org/10.1364/OE.23.027046
  7. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  8. B. G. Ward, "Maximizing power output from continuous-wave single-frequency fiber amplifiers," Opt. Lett. 40, 542-545 (2015). https://doi.org/10.1364/OL.40.000542
  9. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). https://doi.org/10.1364/AO.11.002489
  10. R. Engelbrecht, J. Hagen, and M. Schmidt, "SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density," Proc. SPIE 5777, 795-798 (2005).
  11. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014). https://doi.org/10.1364/OE.22.017735
  12. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009). https://doi.org/10.1364/OE.17.024317
  13. J. D. Marconi, J. M. C. Boggio, and H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett. 40, 1213-1214 (2004). https://doi.org/10.1049/el:20045961
  14. C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
  15. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). https://doi.org/10.1364/OE.19.013218
  16. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser system," Opt. Express 20, 440-451 (2012). https://doi.org/10.1364/OE.20.000440
  17. B. Ward, C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express 20, 11407-11422 (2012). https://doi.org/10.1364/OE.20.011407
  18. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011). https://doi.org/10.1364/OE.19.010180
  19. M. N. Zervas, "Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing and fiber mechanical reliability," Proc. SPIE 10512, 1051205 (2018).
  20. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express 21, 16111-16129 (2013). https://doi.org/10.1364/OE.21.016111
  21. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express 21, 1944-1971 (2013). https://doi.org/10.1364/OE.21.001944
  22. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schroter, H. Bartelt, and M. Duparre, "Mode resolved bend loss in fewmode optical fibers," Opt. Express 21, 3170-3181 (2013). https://doi.org/10.1364/OE.21.003170
  23. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly-polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photonics Res. 3, 86-93 (2015). https://doi.org/10.1364/PRJ.3.000086
  24. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, "Diodepumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier," Opt. Lett. 41, 5202-5205 (2016). https://doi.org/10.1364/OL.41.005202
  25. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength," J. Opt. 17, 045504 (2015). https://doi.org/10.1088/2040-8978/17/4/045504
  26. J. Lee, K. H. Lee, H. Jeong, D. J. Kim, J. H. Lee, and M. Jo, "A study of the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers," Korean J. Opt. Photon. 31, 7-12 (2020). https://doi.org/10.3807/KJOP.2020.31.1.007
  27. S. Jeong, K. Kim, T. Kim, S. Lee, H. Yang, J. Lee, K. H. Lee, J. H. Lee, and M.-S. Jo, "All-fiber 1.5-kW-class single-mode Yb-doped polarization-maintained fiber laser with 10-GHz linewidth," Korean J. Opt. Photon. 31, 223-230 (2020). https://doi.org/10.3807/KJOP.2020.31.5.223
  28. D.-H. Kim, Y.-S. Lee, M.-W. Jeong, S.-M. Lee, K.-H. Kim, J.-H. Lee, K. Park, and Y. Jeong, "Efficiency and output power analysis in high power fiber laser," in Proc. KIMST General Academic Conference (Jeju, Korea, Jun. 2018), pp. 967-968.
  29. C. Shi, R. T. Su, H. W. Zhang, B. L. Yang, X. L. Wang, P. Zhou, X. J. Xu, and Q. S. Lu, "Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes," IEEE Photonics J. 9, 1502910 (2017).
  30. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). https://doi.org/10.1364/AOP.2.000001
  31. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677
  32. N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, "Up to 2.5 kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffractionlimited fiber amplifiers in all-fiber format," Proc. SPIE 10512, 105120E (2018).
  33. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, "Al/Ge co-doped large mode area fiber with high SBS threshold," Opt. Express 15, 8290-8299 (2007). https://doi.org/10.1364/OE.15.008290
  34. Q. Chu, H. Lin, C. Tang, F. Jing, and X. Tang, "Spectral evolution and stimulated Brillouin scattering suppression in phasemodulated fiber amplifier," J. Phys. Commun. 2, 045022 (2018). https://doi.org/10.1088/2399-6528/aaba2f
  35. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 89611R (2014). https://doi.org/10.1117/12.2042261
  36. M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Opt. Express 15, 3236-3246 (2007). https://doi.org/10.1364/OE.15.003236
  37. F. Beier, M. Plotner, B. Sattler, F. Stutzki, T. Walbaum, A. Liem, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Measuring thermal load in fiber amplifiers in the presence of transversal mode instabilities," Opt. Lett. 42, 4311-4314 (2017). https://doi.org/10.1364/OL.42.004311