• Title/Summary/Keyword: Bidirectional Device

Search Result 65, Processing Time 0.023 seconds

The Study on the Actual Examination of the Bidirectional Protection Device in the 22.9[kV] Distribution Power System Interconnected with the DG (분산전원이 연결된 22.9[kV] 배전계통의 양방향 보호기기 실증시험 연구)

  • Lee, Heung-Jae;Choi, Myeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.102-108
    • /
    • 2011
  • The existing power flow has a single direction to the line end but the bidirectional power flow will possibly occur depending on the output capacity in the 22.9[kV] distribution power system connected with the dispersed generation(DG). So these characteristics would influence the power system management. The DG have many advantages such as assistance source, Load share etc. So the utility must apply the bidirectional protection system so as to maximize an advantage of DG. This paper describes the field test case of bidirectional protective device in order to investigate the device performance when applied to bidirectional power system. We have tested in the power system test site of KEPCO and these tests provide the basis for performance verification test of bidirectional protective device in the power system.

High Efficiency Power Conversion System for Battery-Ultracapacitor Hybrid Energy Storages (배터리-울트라커패시터 하이브리드 에너지 저장장치를 위한 고효율 전력변환 시스템)

  • Yoo, Ju-Seung;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.523-531
    • /
    • 2012
  • This paper proposes a high efficiency power conversion system for battery-ultracapacitor hybrid energy storages. The proposed system has only one bidirectional dc-dc converter for hybrid power source with batteries and ultracapacitors. The hybrid power source has bidirectional switching circuits for selecting one energy storage device. Bidirectional power flow between the energy storage device and high voltage capacitor can be controlled by one bidirectional converter. An asymmetrical switching method is applied to the bidirectional converter for high power efficiency. Switching power losses are reduced by zero-voltage switching of power switches. System operation and design considerations are presented. The experimental results are provided to verify the performance of the proposed system.

Bidirectional Current Triggering in Two-Terminal Planar Device Based on Highly Resistive Vanadium Dioxide Thin Film Using 966nm Near Infrared Laser (966nm 근적외선 레이저를 이용한 고저항성 바나듐 이산화물 박막 기반 2단자 평면형 소자에서의 양방향 전류 트리거링)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.28-34
    • /
    • 2015
  • By incorporating a 966nm near infrared laser, we demonstrated bidirectional current triggering of between 0 and 10mA in a two-terminal planar device based on a highly resistive vanadium dioxide ($VO_2$) thin film grown by a pulsed laser deposition method. A two-terminal planar device, which had an electrode separation of $100{\mu}m$ and a $50{\mu}m-wide$ $VO_2$ conducting layer, was fabricated through ion beam-assisted milling and photolithographic techniques. A bias voltage range for stable bidirectional current triggering was determined by investigating the current-voltage curves of the $VO_2-based$ device in a current-controlled mode. Bidirectional current triggering of up to 10mA was realized by directly illuminating the $VO_2$ film with a focused infrared laser beam, and the transient responses of triggered currents were analyzed when the laser was modulated at various pulse widths and repetition rates. A switching contrast between off- and on-state currents was evaluated as ~3571, and the rising and falling times were measured as ~40 and ~20ms, respectively.

Bidirectional Current Triggering in Two-Terminal Planar Device Based on Vanadium Dioxide Thin Film Using 1550nm Laser Diode (1550nm 레이저 다이오드를 이용한 바나듐 이산화물 박막 기반 2단자 평면형 소자에서의 양방향 전류 트리거링)

  • Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • While most switching devices are based on PN junctions, a single layer can realize a switching device in the case of vanadium dioxide($VO_2$) thin films. In this paper, bidirectional current triggering(switching) is demonstrated in a two-terminal planar device based on a $VO_2$ thin film by illuminating the film with an infrared laser at 1550nm. To begin with, a two-terminal planar device, which had a $30{\mu}m$-wide $VO_2$ conducting layer and an electrode separation of $10{\mu}m$, was fabricated. A specific bias voltage range for stable bidirectional laser triggering was experimentally obtained by measuring the current-voltage characteristics of the fabricated device in a current-controlled mode. Then, by constructing a test circuit composed of the device, a standard resistor, and a DC voltage source, connected in series, the transient response of laser-triggered current and its response time were investigated with a DC bias voltage, included in the above specific bias voltage range, applied to the device. In the test circuit with a DC voltage source of 3.35V and a $10{\Omega}$ resistor, bidirectional laser triggering could be realized with a maximum on-state current of 15mA and a switching contrast of ~78.95.

Design of a 2kW Bidirectional DC-DC Converter with 99% Efficiency for Energy Storage System (에너지 저장장치를 위한 99% 고효율 2kW급 양방향 dc-dc 컨버터 설계)

  • Lee, Taeyeong;Cho, Younghoon;Cho, Byung-Geuk
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • In this paper, the bidirectional DC-DC converter is composed of the 900V Silicon-Carbide(SiC) devices to get high efficiency. The 900V SiC device is better than a similar current rated traditional SiC device. it has a lower drain-source resistance and output capacitance. therefore it can reduce the switching and the conduction losses of the DC-DC converter. The experimental results verify the improvement of efficiency and usefulness of 900V SiC device.

  • PDF

A Direct Single-phase Quasi-resonant AC-AC Converter with Zero Voltage Switching

  • Antchev, Mihail Hristov
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.860-873
    • /
    • 2017
  • The present article reports an analysis and investigation of a direct AC-AC quasi-resonant converter. A bidirectional power device, whose switching frequency is lower than the frequency of the current passing through the load, is used for its realization. The zero voltage switching mode is described when zero voltage on the power device is available by measuring it with the control system. The continuous current in the resonant inductance by switching the power device at zero voltage is considered, and it is characterized by two sub-modes. A mathematical analysis of the processes has been made and comparative results from the computer simulation and experimental study have been brought. The converter can be used in a wide areas of power electronics: induction heating, wireless power transfer, AC-DC converters, etc.

A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS (PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터)

  • Jeong, Hyeon-Ju;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Study on Current Switching in Electronic Devices Based on Vanadium Dioxide Thin Films Using CO2 Laser (이산화탄소 레이저를 이용한 바나듐 이산화물 박막 전자 소자에서의 전류 스위칭에 관한 연구)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • With a collimated $CO_2$ laser beam, the bidirectional current switching was realized in a two-terminal electronic device based on a highly resistive vanadium dioxide($VO_2$) thin film. A $VO_2$ thin film was grown on a $Al_2O_3$ substrate by a pulsed laser deposition method. For the fabrication of a two-terminal electronic device, the $VO_2$ thin film was etched by an ion beam-assisted milling method, and the $VO_2$ device, of which $VO_2$ patch width and electrode separation were 50 and $100{\mu}m$, respectively, was fabricated through a photolithographic method. A bias voltage range for stable bidirectional current switching was found by using the current-voltage property of the device measured in a current-controlled mode. The transient responses of bidirectionally switched currents were analyzed when the laser was modulated at a variety of pulse widths and repetition rates. A switching contrast was measured as ~3333, and rising and falling times were measured as ~39 and ~21ms, respectively.

Experimental Study on the Thermal Performance of a Loop-Type Bidirectional Thermo-Diode System (루프형 양방향 열 다이오드 시스템의 열 성능에 관한 실험적 연구)

  • Chun, Won-Gee;Kim, Sin
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • In general, the thermo-diode is a device designed to allow heat to be transferred only in one direction. However, the bidirectional thermo-diode devised to change the heat flow in the desired direction can be used for the reduction of the heating load in winter as well as the cooling load in summer. In this study, a solar heating system using loop-type bidirectional thermo-diodes is designed and set up, also it is successfully applied to an outdoor test cell for the verification of its usefulness.

  • PDF