• Title/Summary/Keyword: Bidirectional DC-DC converter

Search Result 291, Processing Time 0.024 seconds

Analysis of failure rate according to capacitor position of bidirectional converter (양방향 컨버터의 커패시터 위치에 따른 고장률 분석)

  • Kim, Ye-rin;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.261-265
    • /
    • 2019
  • We analyze the failure rate change of a conventional bidirectional converter and a modified one which moves an output capacitor towards propulsion battery. We analysis of the circuit structural homogeneity and the difference between both converters, and confirm that the capacitor working voltage is reduced by changing the capacitor position. After obtaining the capacitor failure rate according to voltage stress factor and operating temperature, it is applied to the fault-tree of the bidirectional converter to obtain the overall failure rate of the converter. We analyzes the advantages and disadvantages of design changes by comparing and analyzing the failure rate and mean time between failures (MTBF) according to operating temperature and capacitance value.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

Development of Inter-link Converter for Power Transmission between Heterogeneous Systems (이종 계통 간의 전력전달을 위한 Inter-link 컨버터 개발)

  • Kim, Sun-Pil;Kim, Kuk-hyeon;Lee, Chang-ho;Le, Tuan-Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.111-119
    • /
    • 2022
  • This paper is about power transfer between heterogeneous systems in zero-energy buildings. Currently, electricity used in buildings, from renewable energy generation power in buildings, consists of alternating current networks. In order to use electricity, alternating current must be converted to direct current, which typically results in a loss of 10%. In order to solve this problem, research is needed to reduce power loss as much as possible by implementing both a DC network and an AC network in a zero-energy building. Therefore, in this paper, an inter-link converter capable of bidirectional power transfer between DC and AC networks applied to zero-energy buildings is developed. The structure of the inter-link converter to be developed was proposed and its feasibility was verified through simulations and experiments.

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

Integrated Operation of Power Conversion Module for DC Distribution System (직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hong, Suk-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

Power Conversion System for Electric Power Take-off of Agricultural Electric Vehicle (농업용 전기차량의 전기식 동력인출장치용 전력변환시스템)

  • Kwak, Bongwoo;Kim, Jonghoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.994-1002
    • /
    • 2019
  • In this paper, we propose the development of a power conversion system for electric power take-off (e-PTO) of agricultural electric vehicles. Most e-PTOs use commercial power $220V_{AC}$. A bidirectional power conversion system having a two-stage structure consisting of a DC-DC converter and a DC-AC inverter for supplying a high output voltage using a low battery voltage of an agricultural electric vehicle is suitable. we propose a power conversion system consisting of the one-stage dual active bridge (DAB) converter and the two-stage bidirectional full bridge inverter. In addition, we propose a soft start algorithm for reducing the inrush current generated by the link capacitor charging during the initial operation. A 3kW prototype system and its corresponding algorithms have been implemented to verify its effectiveness through experiments.

A New Asymmetrical PWM Bidirectional Half Bridge Converter for Wide Input Voltage Range Applications (넓은 입력 전압 범위를 갖는 새로운 비대칭 PWM 방식의 양방향 하프브리지 컨버터)

  • Kim, Jeong-Geun;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • In this paper a new asymmetrical PWM bidirectional half bridge converter is proposed. The proposed converter has simple structure and wide duty cycle range, and therefore is suitable for applications such as fuel cells which have wide voltage variation. With the proposed asymmetrical PWM method the current rating of switch and transformer is significantly reduced compared to the conventional phase angle control method, and ZVZCS and synchronous rectification can also be achieved. This could result in high efficiency and high power density. The proposed converter is analytically compared to the conventional converter, and the proposed method was validated through the experiment.

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua;Yang, Xu;Chen, Wenjie;Yao, Xiaofeng
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.

A Study on Residential Hybrid Distribution System for Reducing Power Conversion Loss (전력 변환 손실 저감을 위한 하이브리드 주거배전시스템)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Choi, Jung-Muk;Lee, Young-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.413-421
    • /
    • 2013
  • This paper proposes residential hybrid distribution system that can supply AC power and DC power to AC load and DC load at the same time. This hybrid distribution system consists of three parts: bidirectional inverter, step-up converter and step-down converter. Also that is used to supply voltage to home application is classified of AC load and DC load as load characteristics. The performance of proposed hybrid distribution system is validated through the hardware implementation and the experimental results.