• Title/Summary/Keyword: Bidirectional Converter

Search Result 355, Processing Time 0.023 seconds

Control of Bidirectional Half-Bridge Converter for Optimal Charge/Discharge of the Supercapacitor (슈퍼커패시터의 최적 충방전을 위한 양방향 하프브리지 컨버터의 제어)

  • Lee, Jong-Hak;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.207-208
    • /
    • 2010
  • 연료전지와 같은 신재생에너지원은 부하변동에 강인하게 대처하기 어려운 특성을 지니고 있어 단독으로 사용될 경우 전력품질 문제를 야기 할 수 있으며, 따라서 이를 보상하기 위한 보조 에너지 저장장치의 사용이 요구된다. 슈퍼커패시터는 전력밀도가 높고 사이클 수명이 긴 특성을 지니고 있어, 주 에너지원의 느린 응답특성을 보상하는 데에 유용하게 사용될 수 있다. 본 논문에서는 슈퍼커패시터의 최적 충방전을 위한 양방향 하프브리지 컨버터의 설계 및 제어에 관해 기술한다. 최적 충방전 전류의 값을 결정하기 위해 EIS 실험을 통해 슈퍼커패시터 모듈의 임피던스 특성을 분석하였고, 충전 전류별 충전 효율이 달라지는 원인을 분석하였으며, 위상제어에 의한 하프브리지 컨버터의 충방전 제어방법에 관해 제시한다.

  • PDF

Performance Comparison Analysis of Anti-Winup Method for Seamless Transfer of Bidirectional DC-DC Converter in Battery Connected Systems (배터리 연계 양방향 DC-DC컨버터의 무순단 절체를 위한 안티-와인드업 기법 성능 비교 분석)

  • Eom, Jun-Yong;Choi, Sung-Jin;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.443-444
    • /
    • 2019
  • DC마이크로그리드에서, 양방향 컨버터를 통한 계통과 배터리와의 전력교환은 필수적으로 요구 된다. 일반적으로 계통이 연결 되었을 때 배터리를 충전시키고, 계통이 끊어 졌을 때는 배터리를 통해 계통에 전력을 공급하는 양방향 동작을 한다. 이러한 전력방향전환 과도상태를 줄이기 위해 무순단 절체 기능이 필요한데, 전류 제어기를 공유하는 방식의 경우 전압제어기의 포화가 발생하면 양방향 컨버터의 출력응답이 늦어지거나, 출력이 불안정해 진다. 이 문제를 해결하기 위해 양방향 컨버터의 대표적인 포화방지(Anti-windup)기법을 적용하여 성능을 비교하였다. 또한 PSIM 소프트웨어를 통해 DC마이크로그리드 시스템을 구현해 효과를 확인한다.

  • PDF

Comparative Analysis of Switch Losses in Cycloconverter-type High Frequency Link Converter for Single-Phase EV Bidirectional Battery Charger (단상 전기자동차 양방향 충전기용 CHFL 컨버터 스위치 손실 비교분석)

  • Kim, Jae-Keun;Kim, Seung-Gwon;Oh, Won-Hyun;Park, Sung-Min
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.332-333
    • /
    • 2019
  • 본 논문에서는 전기자동차용 단상 양방향 온보드 충전기를 위한 Cycloconverter-type high frequency link 컨버터에 Si-IGBT와 SiC-FET을 적용하여 전력반도체의 전력 손실을 예측하고 비교하고 분석한다. 와이드밴드갭 전력반도체 중 하나인 SiC-FET은 기존 Si기반의 IGBT를 대신하여 사용될 전력반도체로써 각광 받고 있다. 또한, 낮은 온-저항으로 인해 적은 전력손실과 고주파 스위칭을 통한 직류단 필터의 크기감소를 통해 높은 전력밀도를 달성할 수 있다. 이에 Si-IGBT와 SiC-FET을 Cycloconverter-type high frequency link 컨버터에 적용하여 전력손실을 PSIM thermal module을 통해 시뮬레이션하고 비교 분석한다.

  • PDF

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Jo, Jongmin;Lee, Tae-Hoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.

Design of AC/DC Combined V2X System for Small Electric Vehicle (소형 전기차 적용을 위한 AC/DC 복합 V2X 시스템 설계)

  • Kim, Yeong-Jung;Chang, Young-Hag;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • The small electric vehicles equipped with V2X(vehicle to everything) systems may provide more information and function to the existing navigation system of the vehicle. The key components of V2X technology include V2V (vehicle to vehicle), V2N(vehicle to network) and V2I (vehicle to infrastructure). This study is to design and implementation of VI type E-PTO which is interfaced with external equipments, the work designs the components of E-PTO such as DC/DC converter, DC/AC converter, battery bidirectional charging system etc. Also, it implements the devices and control systems for driving. The test results of VI type E-PTO components showed allowable 10% requirements of transient voltage variation rate and recovery time within 100ms for start/stop and normal operation.

A Study on the Operating Characteristics for the Grid Interconnected PV System with BESS (BESS를 적용한 계통연계형 PV시스템의 운전특성에 관한 연구)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Cho, Geum-Bae;Baek, Hyung-Lae;Jung, Hae-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.69-77
    • /
    • 2006
  • Photovoltaic is an attractive technology to remote power applications, because of its reliability, low maintenance, and zero fuel requirements. In this paper represents residential PV system based on BESS(battery energy storage system) for managing the electric power, a pattern of daily operation considering the load characteristics of the house, the generation characteristics of PV power, and utility power leveling. For apply to control algorithm, we consider the load on monthly power consumption trend and daily usage pattern. As for the control of the proposed system, to increase the conversion efficiency of the PV power, bidirectional converter is used for MPPT and SPWM inverter. An experimental system is implemented, and some experimental results are provided to demonstrate the effectiveness of the proposed system.

Bidirectional DC-DC Converter with High Efficiency and High Power Density for ISG System (고효율·고전력밀도를 갖는 ISG 시스템용 양방향 DC-DC 컨버터)

  • Park, Junsung;Kwon, Minho;Moon, Dongok;Choi, Sewan;Kim, Changsung Sean;Lee, Geunhong;Song, Minsup;Son, Youngdong
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.17-18
    • /
    • 2013
  • 본 논문에서는 자동차의 연료 절감을 위한 ISG(Idle Stop & Go) 시스템용 양방향 DC-DC 컨버터를 개발하였다. ISG 시스템 사양에 따라 효율 및 부피를 고려하여 3상 비절연 하프브리지 컨버터를 제안하였으며 또한 프리스케일사의 5643L MCU를 이용하여 디지털 제어기를 개발하였다. 1.8kW급 시작품을 통해 타당성을 검증하였으며 부피는 3.4L, 승 강압시 정격부하효율은 각각 95.1%, 95.5%이며 최고효율은 96.1%, 96.4%를 달성하였다.

  • PDF

A study on the simulation for the power converting system of the electric train using Simulink (Simulink를 이용한 전동차용 전력변환장치의 시뮬레이션에 관한 연구)

  • Kang, Moon-Ho;Han, Moon-Seob;Lee, Jae-Ho;Chang, Sang-Hoon;Lee, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.625-628
    • /
    • 1996
  • Recent power converting system for an electric train has characteristics of a complex electromechanical system, which includes VVVF inverter, bidirectional converter, ac motor and controller and etc. So in order to analysis its dynamic characteristics reliably, a powerful and flexible simulation technique is needed. Concerned with this respect, because the Simulink has a veriety of powerful functions and analysis tools not available in conventional power electronics simulation packages, it can be effectively applied to the simulation of the power converting system. In this paper, a schematically similar model for an electric train power converting system is derived on the Simulink Window, based on the Dynamic Node Technique, and several simulations have been implemented with the model. With the simulation results, the characteristics of the power converting system and the easeness of the proposed Simulink-based simulation technique could be verified clearly.

  • PDF