• Title/Summary/Keyword: Bicarbonate buffer

Search Result 61, Processing Time 0.028 seconds

THE IMPORTANCE OF BICARBONATE-BUFFER ON CARDIAC FUNCTION: Contractility, Membrane Potentials and ATP Content of Isolated Atria in the Absence of External Buffers (심장기능(心臟機能)에 미치는 Bicarbonate-Buffer의 중요성(重要性) : Buffer 제거(除去)에 의(依)한 유리심방(遊離心房)의 수축성(收縮性), 막전위(膜電位) 및 ATP 함량(含量)의 변동(變動))

  • Ko, Kye-Chang;Han, Dae-Sup;Jung, Jee-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.63-69
    • /
    • 1972
  • The effects of omission of buffers from Krebs-Ringer medium on contractile activity, membrane potentials and ATP content of electrically stimulated isolated rat atria were investigated. 1) Contractile status: A rapid and marked depression of the contractile activity of atria occurred when buffer-free medium was substituted for the normal Krebs-Ringer medium. 2) Electrical status: The omission of buffers from medium did not alter the resting or action potential magnitudes of atria. However, the action potential duration was on initial increase followed by a decrease in the buffer-free medium. 3) ATP concentration: The omission of buffers from medium resulted in a marked decrease in the ATP levels of atria. It has been also found in the present study that bicarbonate buffer plays an important role for the maintenance of the contractility and ATP levels of the heart. The contractile depression by the omission of buffers was not directly associated with electrical alterations in resting or action potentials of the heart. In the absence of bicarbonate-buffer, glucose no longer plays to maintain the contractile activity and the ATP levels of rat atria.

  • PDF

Hydrodynamic and Chloride Ion Effects on Corrosion of Cobalt in Bicarbonate Buffer Solution (Bicarbonate 완충용액에서 코발트의 부식에 대한 대류와 염화이온의 영향)

  • Kim, Youn-Kyoo;Chon, Jung-Kyoon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.479-486
    • /
    • 2007
  • Bicarbonate 완충용액에서 Co-RDE를 이용하여 RDE 회전속도와 완충용액 속의 염화이온이 Co의 부식과 부동화에 미치는 영향을 연구하였다. Co-RDE의 회전속도가 부식에 미치는 영향은 Levich 식과 일치하였으며 부동화 막을 파괴하는데 염화이온의 효과가 큼을 알 수 있었다. 혼합 전위 이론을 사용하여 대류확산 조건에서 회전속도의 증가에 따라 부식전위가 양의 방향으로 증가하는 모형을 발견하였다. Tafel 영역에서 Co의 용해반응과 수소가 발생하는 환원반응은 전하이동과 물질이동을 이용하여 설명할 수 있었다.

Effect of Bicarbonate and Phosphate Buffer Treatments on the Structure and Thermal Stability of Spent Layer Meat (중 탄산 및 인산염 완층액 처리가 노계육의 조직구조 및 열안정성에 미치는 영향)

  • Yi, Song-Sop;Mast, Morris G.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.695-701
    • /
    • 1991
  • Spent layer breast meat and leg meat samples washed with 0.05 M sodium bicarbonate solution and 0.04 M phosphate buffer(pH 8.3) showed decreases in heat denaturation temperature indicating the destabilization of myofibrillar proteins. The destabilization was attributed to the solubilization of 95 Kdalton and 55 kdalton proteins from the myofibrils observed in gel-electrophoretograms. Transmission electron microscopy further indicated the breakage of Z-lines.

  • PDF

Effects of pH, Buffer System and Lactate on the Simulated Ischemia-reperfusion Injury of H9c2 Cardiac Myocytes

  • Lee, Jun-Whee;Lee, Hye-Kyung;Kim, Hae-Won;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • We elucidated the effects of various components of ischemic medium on the outcome of simulated ischemia-reperfusion injury. Hypoxia for up to 12 hours induced neither apoptotic bodies nor LDH release. However, reoxygenation after 6 or 12 hours of hypoxia resulted in a marked LDH release along with morphological changes compatible with oncotic cell death. H9c2 cells were then subjected to 6 hours of simulated ischemia by exposing them to modified hypoxic glucose-free Krebs-Henseleit buffer. Lowered pH (pH 6.4) of simulated-ischemic buffer resulted in the generation of apoptotic bodies during ischemia, with no concomitant LDH release. The degree of reperfusion-induced LDH release was not affected by the pH of ischemic buffer. Removal of sodium bicarbonate from the simulated ischemic buffer markedly increased cellular damages during both the simulated ischemia and reperfusion. Addition of lactate to the simulated ischemic buffer increased apoptotic cell death during the simulated ischemia. Most importantly, concomitant acidosis and high lactate concentration in ischemic buffer augmented the reperfusion-induced oncotic cell death. These results confirmed the influences of acidosis, bicarbonate deprivation and lactate on the progression and outcome of the simulated ischemia-reperfusion, and also demonstrated that concomitant acidosis and high lactate concentration in simulated ischemic buffer contribute to the development of reperfusion injury.

Effects of Dietary Buffer Material for Chicken Meat Grades and PSE Incidence in Broilers under Transport Heat Stress (고온기 육계의 수송 스트레스에 대한 버퍼제 급여에 따른 닭고기 품질 및 PSE 발생에 미치는 영향)

  • Chae, Hyun-Seok;Choi, Hee-Chul;Na, Jae-Cheon;Jang, Ae-Ra;Kim, Min-Ji;Bang, Han-Tae;Kang, Hwan-Ku;Kim, Dong-Wook;Seo, Ok-Suk;Park, Sung-Bok;Ham, Jun-Sang
    • Korean Journal of Poultry Science
    • /
    • v.37 no.2
    • /
    • pp.131-137
    • /
    • 2010
  • The present study has been performed to suggest a method to decrease the adverse effects of transportation on chicken meat quality. The groups were prepared as follows; Control group and three groups of treatments (sodium phosphate, sodium bicarbonate and magnesium sulfate). The chicken fed magnesium sulfate showed higher chicken meat quality compared to control and other treatment groups. Also, minor and severe PSE incidence of chicken breast was found at 88% in sodium phosphate group, 24% in sodium bicarbonate group and 56% in magnesium sulfate group. Control group showed 92% higher minor and severe PSE incidence of chicken breast compared to other groups. In control group, the external bruise of chicken showed 32% but 22, 24 and 44% in other treatment groups, respectively. Lightness ($L^*$) of chicken containing sodium phosphate treatment, sodium bicarbonate treatment and magnesium sulfate were 67.05, 66.27 and 65.89, while Lightness ($L^*$) of chicken containing control group was decreased of 67.88. In conclusion, dietary buffer material (sodium phosphate, sodium bicarbonate, magnesium sulfate) under heat stress decreased adverse effects including death, wound or abnormality of chickens.

Power Density Enhancement of Anion-Exchange Membrane-Installed Microbial Fuel Cell Under Bicarbonate-Buffered Cathode Condition

  • Piao, Jingmei;An, Junyeong;Ha, Phuc Thi;Kim, Taeyoung;Jang, Jae Kyung;Moon3, Hyunsoo;Chang, In Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.36-39
    • /
    • 2013
  • We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 $mW/m^2$ maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition was higher than the phosphate-buffered condition, although the phosphate condition had less interfacial resistance between the membrane and electrolyte. Therefore, we posit here that the increased power of the bicarbonate-buffered MFC may be caused by the higher cathode potential rather than by the interfacial membrane-electrolyte resistance.

Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell (미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산)

  • Lee, Yu-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).

THE EFFECTS OF IONS AND BUFFER SOLUTIONS ON THE MRNA EXPRESSION OF gtfD GENE OF Streptococcus mutans (Streptococcus mutans의 gtfD 유전자 발현에 대한 이온 및 완충액의 영향)

  • Kim, Bo-Young;Kim, Shin;Chung, Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.314-322
    • /
    • 2004
  • The production of a glucan was affected by the concentration of ions and buffer solutions, and nutrients in an oral cavity. In this study, the effects of ions and buffer solutions on the mRNA expression of gtfD gene in Streptococcus mutans, an important causative agent of dental caries, were investigated by Fluorescent in situ hybridization(FISH). At first, ions and buffer solutions had little effect on the multiplication of Streptococcus mutans. The green fluorescence according to the mRNA expression of gtfD gene was detected in the BHI broth containing 1% sucrose. The intensities of the green fluorescence were strong at 0.25mM of $CaCl_2$. Little fluorescence was detected by the addition of KCl, except far 10mM KCl at which fluorescence intensities were similar to those of the control. Fluorescence intensities were weak at each concentration of $MgCl_2$ when compared to the control. As for buffer solutions, fluorescence intensities were similar to those of the control at each concentration of buffer solutions, except that they were little detected at 100mM of potassium phosphate.

  • PDF

Renal Tubular Acidosis (신세뇨관 산증)

  • Park, Hye-Won
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.120-131
    • /
    • 2010
  • Renal tubular acidosis (RTA) is a metabolic acidosis due to impaired excretion of hydrogen ion, or reabsorption of bicarbonate, or both by the kidney. These renal tubular abnormalities can occur as an inherited disease or can result from other disorders or toxins that affect the renal tubules. Disorders of bicarbonate reclamation by the proximal tubule are classified as proximal RTA, whereas disorders resulting from a primary defect in distal tubular net hydrogen secretion or from a reduced buffer trapping in the tubular lumen are called distal RTA. Hyperkalemic RTA may occur as a result of aldosterone deficiency or tubular insensitivity to its effects. The clinical classification of renal tubular acidosis has been correlated with our current physiological model of how the nephron excretes acid, and this has facilitated genetic studies that have identified mutations in several genes encoding acid and base ion transporters. Growth retardation is a consistent feature of RTA in infants. Identification and correction of acidosis are important in preventing symptoms and guide approved genetic counseling and testing.