• Title/Summary/Keyword: Biaxial stress

Search Result 209, Processing Time 0.025 seconds

Surface Damage Accumulation in Alumina under the Repeated Normal-Tangential Contact Forces

  • Lee, Kwon-Yong;Choi, Sung-Jong;Youn, Ja-Woong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • Surface damage accumulation of alumina ceramics under the cyclic stress state was analyzed. The alternating stress state in repeat pass sliding contact was simulated by a synchronized biaxial (normal and tangential) repeated indentation technique. Wear debris formation mechanism through damage accumulation and fatigue grain failure in both alumina ceramic balls and flat disks was confirmed, and the contact induced surface degradation due to fatigue cracking accumulation was quantified by measuring vertical contact displacement. Variation of structural compliance (slope of load-displacement curve) of two contacting bodies was expressed as a variation of the apparent elastic property, called pseudo-elastic constant, of the contact system.

  • PDF

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

Numerical method for the strength of two-dimensional concrete struts

  • Yun, Y.M.
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.621-634
    • /
    • 2021
  • For the reliable strut-and-tie model (STM) design of disturbed regions of concrete members, structural designers must accurately determine the strength of concrete struts to check the strength conditions of a selected STM el and the anchorage of reinforcing bars in nodal zones. In this study, the author proposed a consistent numerical method for strut strength, applicable to all two-dimensional STMs. The proposed method includes the effects of a biaxial stress state associated with tensile strains in reinforcing bars crossing a strut, deviation angle between strut orientation and compressive principal stress flow, and degree of confinement provided by reinforcement. The author examined the method's validity through the STM prediction of the ultimate strengths of 517 reinforced concrete (RC) deep beams, 24 RC panels, and 258 RC corbels, all tested to failure.

Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials (이방성 재료의 소성변형 해석을 위한 고정점 축차)

  • Seung-Yong Yang;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

Strength Prediction of Kraft Paperboard under Combined Stress (조합하중을 받는 Kraft 판지의 강도예측)

  • Lim, Won-Kyun;Jeong, Woo-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Based on the form of the Tsai-Hill criterion, a new failure criterion for anisotropic material subjected to combined stress is developed and demonstrated. It is capable of accurately calculating the strength of anisotropic materials. The generality and accuracy of the present failure criterion are illustrated by examination through the use of Kraft paperboards under various loading conditions. Compared to the Tsai-Hill theory, which is much too conservative at high levels of shear stress, the present criterion has a good agreement with the experimental data. It also has the ability to calculate the strength more simply, compared to the Tan-Cheng theory.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method (가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.

A study on the In-situ Stress Measurement of Anisotropic Rocks by Leeman Method - An Experimental and Numerical Simulation on Transversely Isotropic Rock (공벽변형법에 의한 이방성 암반의 초기응력 측정에 관한 연구 - 횡등방성 암석에 대한 실험실 모형 실험 및 수치해석)

  • 민기복;이정인;최해문
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.237-247
    • /
    • 2002
  • A total of 18 stress measurements were performed in the rock and rock-like blocks in the laboratory to estimate the influence of anisotropy in rock. Full scale overcoring equipment, which consists of a coring machine and a biaxial loading system by flat jacks, was developed to simulate the in-situ rock stress condition in the laboratory By comparing the isotropic analysis with the anisotropic analysis in measuring the stress, conclusions have been drawn as to the influence of anisotropy. The maximum difference between the isotropic and the anisotropic analysis was 34% and it was shown that the stress measurement considering the anisotropy was needed. To confirm the validity of the observed data, a diagnostic analysis of stress relief curve by overcoring was conducted using the three dimensional finite difference program, FLAC 3D.

Time-dependent Deformation Behaviour of Queenston Shale (퀸스톤 제일의 시간의존적 변형거동)

  • 이영남
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.57-77
    • /
    • 1989
  • This paper describes the design and construction aspects of time-dependent deformation test apparatus for slut.oiling rocks and presents the test results obtained using these apparatus. These tests are modified semi-confined swell test, swell test under uniaxial tension and swell test under biaxial stress. These apparatus measure the time.dependent deformations in three orthogonal directions of the test specimen under simplified field stress conditions. The test results obtained from these test apparatus for the last several years show that these apparatus have performed satisfactorily. The test results show that the time-dependent deformation behaviour of the Queenston shale is cross-anisotropic with higher swelling in the vertical direction (normal to bedding plane) than in horizontal direction (parallel to bedding plane) under free swell condition. The applied stress in one direction suppresses the swelling deformation in that direction as well as that in the orthogonal directions.

  • PDF