• 제목/요약/키워드: Biaxial Test

검색결과 192건 처리시간 0.028초

이중하중을 받는 S45C의 피로거동에 관한 연구

  • 윤두연;이원석;이현우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 1992
  • Thin walled tubular specimens of 0.45% structural carbon steel were used in the bizxial tests. Biaxial fatigue tosts were conducted on strain control including fully reversed tension-compression and in phase tension torsion loadings. The predictions of the biaxial fatigue life were based upon the uniaxial low cycle fatigue test results. Fatigue lives were ranged from 10$\^$2/to 10$\^$5/cycles. Four multiaxial strain based theories have been developed to correlate biaxial fatigue experimdntal results. These theories showed good correlatins except for maximum shear strain theory. In uniaxial tests, crack behavior was observed that crack initiated in the maximum shear strain direction and propagated in the direction perpendicular to principal stross. But, in biaxial tests, both crack initiation and growth occured on the maximum shear strain direction only.

이축인장을 받는 철근콘크리트 패널의 균열 거동 (Cracking Behavior of RC Panels under Biaxial Tension)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.599-606
    • /
    • 2003
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subjected to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, average response of an embedded reinforcement, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete tension members with results from experimental studies. Finally, correlation studies between analytical results and experimental data from biaxial tension test are conducted with the objective to establish the validity of the proposed models and identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

  • PDF

굽힘 하중 하에서의 2-D Biaxial Braided 중공형 복합재료의 거동 (Behavior of 2-D Biaxial braided hollow composite under bending)

  • 서거원;임동진;윤희석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.12-16
    • /
    • 2000
  • This study is about the effect of braiding on the 2-D biaxial braided hollow composite(BD) compared with unidirectional hollow composite(UD). The specimens were made of T700S Carbon/Epoxy prepreg and T700S dried Carbon yarns. Fiber volume fraction of UD and BD was obtained experimentally and analytically. Fiber volume fraction of BD was derived based on unit cell of braiding yarn section. Bending test was executed to investigate the effect of braiding part. The result of experiment and analysis of fiber volume fraction has good agreement. Bending strength of BD is about 20% higher than that of UD.

  • PDF

CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안 (A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels)

  • 박중철;권재도
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.

2축 휨과 축력을 동시에 받는 철근콘크리트 기둥에 대한 실험적 연구 (An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected to Axial Force and Biaxial Bending)

  • 김진근;이상순;이수곤;김선영
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.55-62
    • /
    • 1999
  • When stress is beyond elastic limit or cracks occur in a reinforced concrete member subjected to axial force and biaxial bending, curvature about each principal axis of uncracked section is influenced by axial force and bending moments about both major and minor principal axes. It is mainly due to the translation and rotation of principal axes of the cross section after cracking. Recently, by considering these effects, a numerical method predicting the behavior of concrete columns subjected to axial force and biaxial bending was proposed. In this study, in order to verify the proposed numerical method and investigate the effects of cracking on the behavior of reinforced concrete columns, a series of tests were carried out for 16 tied reinforced concrete columns with 100×100 mm square and 200×100 mm rectangular sections under various loading conditions. The angle between the direction of eccentricity and the major principal axis of uncracked section were 0, 30, 40° for the square section and 0, 30, 45, 60, 90° for the rectangular section, respectively. A comparison between numerical predictions and test results shows good agreements in ultimate loads, axial force-lateral deflection relations, and lateral deflection trajectories. It is also found, in this limited investigation, that the ACI's moment magnifier method is conservative in both uniaxial and biaxial loading conditions.

최적실험체 제원에 의한 콘크리트의 일축 및 이축 휨인장강도 (Uniaxial and Biaxial Flexural Strength of Plain Concrete using Optimum Specimen Configuration)

  • 오홍섭;지광습
    • 대한토목학회논문집
    • /
    • 제30권2A호
    • /
    • pp.185-191
    • /
    • 2010
  • 콘크리트 구조물의 사용성과 내구성 저하의 원인이 되는 균열은 응력의 크기, 응력구배 및 기타 구조적 재료적 원인 등에 의하여 발생하기 때문에 콘크리트의 균열강도를 정확히 예측하기는 매우 어렵다. 특히 판구조의 경우 기존의 일축휨강도에 의한 균열평가가 실제 구조물의 균열강도와 상이할 수 있다. 본 연구에서는 이축휨인장강도 평가에 적합한 시험체 제원을 적용하여 일축과 이축휨강도 특성을 비교, 평가하였다. 실험결과 골재의 크기 및 실험체 크기의 증가에 따라 일축 및 이축휨강도 모두 강도가 저하되는 것으로 나타났다. 일축휨강도에 비하여 이축휨강도가 일축휨강도의 39.5~99.2%로서 전반적으로 낮은 강도를 갖는 것으로 평가되었으며, 특히 20 mm 골재를 사용한 경우에는 76%정도로 고찰되었다.

공동을 포함하는 횡등방성 절리암반 모델의 압축 파괴거동 (Compressive Fracture Behaviors of Transversely Isotropic Jointed Rock Model with an Opening)

  • 사공명;김세철;유재호;박두희;이준석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.58-63
    • /
    • 2009
  • Biaxial compression test was conducted on a transversely isotropic synthetic jointed rock model for the understanding of the fracture behaviors of a sedimentary or metamorphic rocks with well developed bedding or foliation in uni-direction. The joint angles employed for the model are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made of early strength cement. From the biaxial compression test, initiation propagation of tensile cracks at norm to the joint angle was found. The propagated tensile cracks eventually developed rock blocks, which was dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The experiment results were validated from the simulation by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows a progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

  • PDF

도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구 (An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab)

  • 정주홍;강성훈;이승창;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.155-163
    • /
    • 2013
  • 이 연구는 도넛형 이방향 중공슬래브에 매입된 이형철근의 부착특성 및 부착강도 산정을 위한 기초적인 연구이다. 도넛형 이방향 중공슬래브의 철근 부착특성 및 부착강도 산정을 위해 pull-out test를 수행하였다. 도넛형 중공형성체는 슬래브 내부에 배치되어 철근과 중공형성체 사이에 내부의 피복이 형성된다. 이러한 내부피복두께는 외부피복두께보다 상대적으로 작은 피복두께를 가지며 중공형상에 따라 $2.5d_b$보다 작은 내부피복두께가 형성되기 때문에 철근의 부착에 영향을 미치게 된다. 또한 중공형성체가 일정 간격으로 떨어져 배치되어 있으므로 인장철근을 감싸고 있는 피복두께의 조건이 철근의 길이방향으로 변하게 된다. 따라서 도넛형 이방향 중공슬래브의 부착특성을 알아보기 위해서 중공형성체 형상에 따라 부착구간을 구분하였다. 구간별로 내부피복두께에 따른 부착응력-슬립 관계를 확인하였으며, 중공형성체 전 구간에 걸친 부착응력분포를 확인하여 철근의 길이방향에 따른 부착응력의 발현정도를 확인하였다. 또한 구간별 부착응력-슬립 관계를 기반으로 하여 도넛형 중공슬래브의 부착강도를 산정할 수 있는 부착강도 산정 방법을 제안하였다.

2축 인장을 받는 철근콘크리트 패널의 균열 거동 (Cracking Behavior of RC Panel Subjected to Biaxial Tension)

  • 조재열;조남소;구은숙;김남식;전영선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2002
  • Tension tests of six half-thickness concrete containment wall elements were conducted as part of a Korea Atomic Energy Research Institute (KARRI) program. The aim of the KAERI test program is providing a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking method that requires modeling of material behavior including concrete cracking and reinforcement/concrete interaction exhibited by the test. Major test variable is the compressive strength of concrete and its effect on the behavior of prestressed concrete panel subjected to biaxial tension.

  • PDF

LNG저장탱크의 멤브레인용 국산 304 스테인리스강의 기계적성질 및 피로수명 평가 (The Evaluation of Mechanical Properties and Fatigue Life for Domestic 304 Stainless Steel Used as Membrane Material in LNG Storage Tank)

  • 김형식
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1644-1650
    • /
    • 2001
  • Mechanical properties of domestic 374 stainless steel have been evaluated fur membrane material used in LNG storage tank. LNG tank is operated around -162$^{\circ}C$. The temperature of membrane depends on LNG level. Accordingly, the membrane material is deteriorated by variation of liquid pressure and temperature. Tensile test and fatigue life test were performed at room temperature and -l62$^{\circ}C$ per code requirements. Especially the biaxial fatigue life test was conducted with shaped membrane sheet at a thermal strain of $\Delta$T=190$^{\circ}C$ The test results obtained with the domestic 304 stainless steel showed better properties compared to the values required by code.