• Title/Summary/Keyword: Biased Flow

Search Result 66, Processing Time 0.028 seconds

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Investigation of Near.Transducer Errors in Acoustic Doppler Current Profiler Measurements Using Experimental and Numerical Method (ADCP 계기 부근에서 발생하는 관측 오차의 실험 및 수치모의에 의한 고찰)

  • Kim, Dong-Su;Kang, Boo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.944-951
    • /
    • 2011
  • This paper reports results of a joint experimental and numerical investigation of the causes of near-transducer errors due to the combined effect of acoustic and ADCP-induced flow disturbance near the ADCP transducer. The laboratory study focused on an isolated ADCP (deployment without boat). Measurements of the flow disturbance produced by the ADCP in vertical and horizontal planes were obtained acquiring measurements with an Acoustic Doppler Velocimeter (ADV). Concurrent measurements with ADCP and ADV were made to infer additional near-transducer effects in the ADCP measurements. The numerical investigation was designed to extend the inquiry on the near-transducer potential errors when the ADCP is deployed from a boat. Large Eddy Simulation (LES) was conducted to obtain the extent and magnitude of the disturbances induced by the drag acting on a boat-mounted ADCP and by the blockage effect of the instrument and boat. It is found the velocities measured by the ADCP are biased low and differ substantially from the undisturbed channel flow solution within a limited layer beneath the instrument.

Fluid Flow and Solute Transport in a Discrete Fracture Network Model with Nonlinear Hydromechanical Effect (비선형 hydromechanic 효과를 고려한 이산 균열망 모형에서의 유체흐름과 오염물질 이송에 관한 수치모의 실험)

  • Jeong, U-Chang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.347-360
    • /
    • 1998
  • Numerical simulations for fluid flow and solute transport in a fracture rock masses are performed by using a transient flow model, which is based on the three-dimensional stochastic and discrete fracture network model (DFN model) and is coupled hydraulic model with mechanical model. In the numerical simulations of the solute transport, we used to the particle following algorithm which is similar to an advective biased random walk. The purpose of this study is to predict the response of the tracer test between two deep bore holes (GPK1 and GPK2) implanted at Soultz sous Foret in France, in the context of the geothermal researches.l The data sets used are obtained from in situcirculating experiments during 1995. As the result of the transport simulation, the mean transit time for the non reactive particles is about 5 days between two bore holes.

  • PDF

A Preliminary Quantification of $^{99m}Tc$-HMPAO Brain SPECT Images for Assessment of Volumetric Regional Cerebral Blood Flow ($^{99m}Tc$-HMPAO 뇌혈류 SPECT 영상의 부위별 체적 혈류 평가에 관한 기초 연구)

  • Kwark, Cheol-Eun;Park, Seok-Gun;Yang, Hyung-In;Choi, Chang-Woon;Lee, Kyung-Han;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.170-174
    • /
    • 1993
  • The quantitative methods for the assessment of the cerebral blood flow using $^{99m}Tc$-HMPAO brain SPECT utilize the measured count distribution in some specific reconstructed tomographic slice or in algebraic summation of a few neighboring slices, rather than the true volumetric distribution, to estimate the relative regional cerebral blood flow, and consequently produce the biased estimates of the true regional cerebral blood flow. This kind of biases are thought to originate mainly from the arbitrarily irregular shape of the cerebral region of interest(ROI) which are analyzed. In this study, a semi-automated method for the direct quantification of the volumetric regional cerebral blood flow estimate is proposed, and the results are compared to those calculated by the previous planar approaches. Bias factors due to the partial volume effect and the uncertainty in ROI determination are not considered presently for the methodological comparison of planar/volumetric assessment protocol.

  • PDF

A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor (공연비 변화가 MILD 연소 특성에 미치는 영향에 관한 해석적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Shim, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.587-592
    • /
    • 2010
  • A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the variation of air fuel ratio. For the smaller magnitude of air injection velocity(10 m/s), the air flow could not penetrate toward upper part of furnace. On the other hand, the air flow suppresses the fuel flow for the case of air injection velocity 30 m/s. The air velocity 18 m/s is corresponding to the stoichiometric air flow velocity, and for that case, the air flows to relatively more upper part of the furnace when compared with the case of air injection velocity 10 m/s. The reaction zone is produced with the previous flow pattern, so that the reaction zone of the air injection velocity 10 m/s is biased to the air nozzle side and for the case of air injection velocity 30 m/s, the reaction zone is inclined to the fuel nozzle side. For the cases with the air injection velocities 16, 18, 20 m/s, the reaction zone is nearly located at the center between air nozzle and fuel nozzle. The maximum temperatures and NOx concentrations for the cases of air injection velocity 16, 18, 20 m/s are lower than the cases with air injection velocity 10, 30 m/s. From the present study, the stoichiometric air fuel ratio is considered as the most optimal operating condition for the NOx reduction.

Constraints on Cosmological Models from the Large-Scale Velocity Field

  • Doh, Jean-Gyung;Park, Changbom-;Chun, Mun-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 1993.04a
    • /
    • pp.16-16
    • /
    • 1993
  • The Cosmic Mach number M is the ratio of the bulk flow velocity of the galaxrvelocity field on some scale R to the unall scale velocity dispersion within refcions of scale R. Because M is the ratio of two velocities, it is inn-dimansionat and the Here, independent of the amplitude of the power specHim and of the biasplnmeter in the linear theory. We have measured the Mach rnlmber for two observational samples: a spiral galaxy sample(AHM) of Aaronson and hiscoBlaborators with absolute distances measured by the infrared Ttillr-Fisher relatioa and an elliptical galaxy sample(EGALS) of Faber or 0, with distances determined by the relation. The effective depths distances of galaxies from the Local Group of these samples are 1639 km/s and 2862 e/s, respectivelr. The Machnumbers from these observed peculiar velocity Selds He fund as M=0.95 for AHMand M=0.59 for EGALS. We comPBre these calculated Mach numbers with thosefrom meck surweys drawn fuom three cosnulogical medels: the stand8rd biased nh=0.5 CDM modet an open CDM rrudel with gh=0.2, and a medd with thepower-law power specelm P(k)-k-1 and n=1. The Mach rnlmber test can give robust constraints on these cosmelogical nudels whose power spectra have very different shapes at large scales.

  • PDF

The Electrical Characteristics of Shading Effect in Photovoltaic Module (PV모듈에서 그림자에 의한 전기적 특성)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Ji-Hong;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.257-262
    • /
    • 2008
  • In this paper, we study the electric characteristics of shading effects in photovoltaic module in case of outdoor operation. When fabricating PV module, solar cells are connected serially to obtain the high voltage because of its low open circuit voltage. And total current is determined by lowest current among solar cells. When the shading happens on PV module's surface, the current of shaded solar cell determine the total current flow. Because of this, generally by-pass diode is installed on junction box. The bypass diode operate when revered and shaded solar cell's voltage is over 0.6 voltage. The reverse-biased solar cell gives reduced maximum power of PV module and might give negative effect on durability. So, adequate by-pass installation and selection is needed.

  • PDF

Characteristics of Tropical Cyclone Activity Influenced by Decadal Variability of SST (해수면 온도의 10년 주기 변동에 영향을 받는 Tropical Cyclone의 특징)

  • Kim, Dong-Hyeok;Kang, In-Sik
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.485-492
    • /
    • 2008
  • This study confirms that a decadal variation of the SST (Sea Surface Temperature) in the WNP (Western North Pacific) has an influence on the genesis and passage ofa Tropical Cyclone. The decadal mode was obtained by calculating the SST anomaly on the domain $150^{\circ}E-190^{\circ}E$, and $5^{\circ}S-5^{\circ}N$. Such decadal variation was subsequently analyzed to confirm that it is a dominant mode in central Pacific region. Next, after classifying the years into relatively positive years and relatively negative years, the characteristics of Tropical Cyclone in each year, such as a genesis and passage frequency, were investigated. Compared to the relatively negative years, during the relatively positive years, the location of Tropical Cyclone genesis was biased toward South-Eastern region, while the characteristics of the cyclone were more distinct during late season of the year trom September to December than in mid season from June to August. Examining the movement passage through the observation of passage fiequency, there was a significant difference between positive year and negative year in their passages at a 90% confidence level. Moreover, the number of Tropical Cyclone, maximum wind, and life time also showed higher values in positive years than in negative years. These features were confirmed by examining the 850hPa cyclonic flow field, vorticity field, and vertical wind shear field, all of which contribute to the genesis of a Tropical Cyclone.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.