• Title/Summary/Keyword: Bias estimation

Search Result 557, Processing Time 0.023 seconds

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

Uncertainty Analysis of Quantitative Radar Rainfall Estimation Using the Maximum Entropy (Maximum Entropy를 이용한 정량적 레이더 강우추정 불확실성 분석)

  • Lee, Jae-Kyoung
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.511-520
    • /
    • 2015
  • Existing studies on radar rainfall uncertainties were performed to reduce the uncertainty for each stage by using bias correction during the quantitative radar rainfall estimation process. However, the studies do not provide quantitative comparison with the uncertainties for all stages. Consequently, this study proposes a suitable approach that can quantify the uncertainties at each stage of the quantitative radar rainfall estimation process. First, the new approach can present initial and final uncertainties, increasing or decreasing the uncertainty, and the uncertainty percentage at each stage. Furthermore, Maximum Entropy (ME) was applied to quantify the uncertainty in the entire process. Second, for the uncertainty quantification of radar rainfall estimation at each stage, this study used two quality control algorithms, two rainfall estimation relations, and two bias correction techniques as post-processing and progressed through all stages of the radar rainfall estimation. For the proposed approach, the final uncertainty (ME = 3.81) from the ME of the bias correction stage was the smallest while the uncertainty of the rainfall estimation stage was higher because of the use of an unsuitable relation. Additionally, the ME of the quality control was at 4.28 (112.34%), while that of the rainfall estimation was at 4.53 (118.90%), and that of the bias correction at 3.81 (100%). However, this study also determined that selecting the appropriate method for each stage would gradually reduce the uncertainty at each stage. Finally, the uncertainty due to natural variability was 93.70% of the final uncertainty. Thus, the results indicate that this new approach can contribute significantly to the field of uncertainty estimation and help with estimating more accurate radar rainfall.

Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion (GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선)

  • Song, Ha-Ryong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • In the multi-sensor system, sensor registration errors such as a sensor bias must be corrected so that the individual sensor data are expressed in a common reference frame. If registration process is not properly executed, large tracking errors or formation of multiple track on the same target can be occured. Especially for launch vehicle tracking system, each multiple observation lies on the same reference frame and then fused trajectory can be the best track for slaving data. Hence, this paper describes an on-line bias estimation/correction and asynchronous sensor fusion for launch vehicle tracking. The bias estimation architecture is designed based on pseudo bias measurement which derived from error observation between GPS and radar measurements. Then, asynchronous sensor fusion is adapted to enhance tracking performance.

An Experiment : Distribution of the Adversity Quotient as a Reduction of Bias in Estimating Earnings

  • Riza PRADITHA;Lasty AGUSTUTY;Robert JAO;Andi RUSLAN;Nur AISYAH;Diah Ayu GUSTININGSIH
    • Journal of Distribution Science
    • /
    • v.21 no.6
    • /
    • pp.99-106
    • /
    • 2023
  • Purpose: This study aims to analyze the distribution of the role of adversity quotient in the estimation bias of future earnings. Adversity quotient is a cognitive ability that can be distributed as a reducer of bias effects that occur in profit forecasting or investment decision making. Research design, data and methodology: The study designs a full factorial within-subject 2×3 as a laboratory experiment. The study subjects are 30 accounting students who are proxied as investors. Results: The results show that the estimated earnings made by investors experience anchoring-adjustment heuristic bias which means the initial value becomes a basic belief that influences the decisions taken by investors. However, this study also provides evidence that heuristic bias can be reduced by the presence of adversity quotient. Investors who have high adversity ability are abler to reduce the estimation bias when compared to investors who have medium and low adversity ability so the higher the difficulty ability possessed by investors, the less likely the occurrence of bias in decision making. Conclusion: Thus, the adversity quotient is proven to be distributed as a reducing opportunity from the bias that will occur in estimating future earnings or making investment decisions.

Bayesian estimation for finite population proportion under selection bias via surrogate samples

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1543-1550
    • /
    • 2013
  • In this paper, we study Bayesian estimation for the finite population proportion in binary data under selection bias. We use a Bayesian nonignorable selection model to accommodate the selection mechanism. We compare four possible estimators of the finite population proportions based on data analysis as well as Monte Carlo simulation. It turns out that nonignorable selection model might be useful for weekly biased samples.

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Improvement of Rainfall Estimation according to the Calibration Bias of Dual-polarimetric Radar Variables (이중편파레이더 관측오차 보정에 따른 강수량 추정값 개선)

  • Kim, Hae-Lim;Park, Hye-Sook;Ko, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1227-1237
    • /
    • 2014
  • Dual-polarization can distinguish precipitation type and dual-polarization is provide not only meteorological phenomena in the atmosphere but also non-precipitation echoes. Therefore dual-polarization radar can improve radar estimates of rainfall. However polarimetric measurements by transmitting vertically vibration waves and horizontally vibrating waves simultaneously is contain systematic bias of the radar itself. Thus the calibration bias is necessary to improve quantitative precipitation estimation. In this study, the calibration bias of reflectivity (Z) and differential reflectivity ($Z_{DR}$) from the Bislsan dual-polarization radar is calculated using the 2-Dimensional Video Disdrometer (2DVD) data. And an improvement in rainfall estimation is investigated by applying derived calibration bias. A total of 33 rainfall cases occurring in Daegu from 2011 to 2012 were selected. As a results, the calibration bias of Z is about -0.3 to 5.5 dB, and $Z_{DR}$ is about -0.1 dB to 0.6 dB. In most cases, the Bislsan radar generally observes Z and $Z_{DR}$ variables lower than the simulated variables. Before and after calibration bias, compared estimated rainfall from the dual-polarization radar with AWS rain gauge in Daegu found that the mean bias has fallen by 1.69 to 1.54 mm/hr, and the RMSE has decreased by 2.54 to 1.73 mm/hr. And estimated rainfall comparing to the surface rain gauge as ground truth, rainfall estimation is improved about 7-61%.

A Comparative Study of Small Area Estimation Methods (소지역 추정법에 관한 비교연구)

  • Park, Jong-Tae;Lee, Sang-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2001
  • Usually estimating the means is used for statistical inference. However depending the purpose of survey, sometimes totals will give the better and more meaningful in statistical inference than the means. Here in this study, we dealt with the unemployment population of small areas with using 4 different small area estimation methods: Direct, Synthetic, Composite, Bayes estimation. For all the estimates considered in this study, the average of absolute bias and men square error were obtained in the Monte Carlo Study which was simulated using data from 1998 Economic Active Population Survey in Korea.

  • PDF

Wind and Airspeed Error Estimation with GPS and Pitot-static System for Small UAV

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • This paper presents a method to estimate steady wind and airspeed bias error using an aircraft with GPS and airspeed sensor. The estimation uses the vector relation between the inertial, air, and wind velocities through a novel design of an extended Kalman filter. The observability analysis is also presented to show that the aircraft is required to keep changing its flight direction for the desired observability. The feasibility and performance of the proposed algorithm is demonstrated through simulations and flight experiments.

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.