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Abstract

In this paper, we study Bayesian estimation for the finite population proportion
in binary data under selection bias. We use a Bayesian nonignorable selection model
to accommodate the selection mechanism. We compare four possible estimators of the
finite population proportions based on data analysis as well as Monte Carlo simula-
tion. It turns out that nonignorable selection model might be useful for weekly biased
samples.

Keywords: Accept-reject algorithm, binary response, grid method, Monte Carlo method,
selection bias, surrogate sample.

1. Introduction

We consider the situation in which a sample is drawn from a finite population, but the
sample is not a random sample from the original finite population. The sample could be
significantly perturbed by some mechanism. For example, in many complex surveys, sample
units are drawn with probability proportional to some measure of size. Then the model
holding for the sample could be different from the model for the rest of the population (i.e.
there is selection bias). Patil and Rao (1978) formed models for this type of sample design
using weighted distributions. We use a Bayesian method to infer about a finite population
proportion under selection bias. Kwak and Kim (2012) studied Bayesian estimation for the
finite population proportions in multinomial problem without selection bias.

If a biased sample is drawn from a finite population, one cannot make inference about the
nonsampled values unless the nature of the bias is clearly understood. One example is when
a sample is drawn from a finite population with probability proportional to size (PPS). In
this case the sampled values are large and the nonsampled values tend to be small. It is
possible to construct an appropriate selection model for the sample data, and this will turn
out to be a weighted distribution. Predictive inference from the weighted distribution is not
straightforward.

Nandram (2007) used surrogate sampling to convert data obtained through a selection
bias mechanism to provide an equivalent simple random sample. In fact, the original sample
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is a random sample from a weighted distribution and one can convert this sample to a
surrogate sample from the original distribution. This surrogate sample can be used to make
an inference about the original finite population without any further consideration about
the biased sample.

In concrete terms we briefly describe the weighted distribution. Let y;,7 =1, ..., N, denote
the finite population values and let p(y|@1) denote the probability distribution that describes
the finite population. When a random sample is taken from this finite population, it is
perturbed by the weight function w(y; 681, 02) to produce a sample from the new probability
distribution ¢(y; 01, 02). That is, a representative sample is observed from

q(y;01,02) = w(y;01,02)p(y|61).

The idea here is to create a surrogate sample from the original finite population using p(y|01)
and then make an inference about the finite population proportion. The Bayesian analysis
is used to convert the biased sample into a random sample from the finite population. We
use the surrogate sampler to infer about a finite population proportion using data from a
possibly biased sample.

When one includes the selection probabilities in a model, there are two possible choices,
an ignorable or nonignorable selection model. In an ignorable selection model the response
variable is not related to the selection mechanism, but in a nonignorable selection model the
response is related to the selection mechanism, at least partially. For example, for binary data
there may ba a higher/lower proportion of positive responses among the sampled values than
among the nonsampled values. To account for this discrepancy, one can allow the response
binary variable to be correlated with the survey weights or their reciprocals.

To incorporate the selection bias into the ignorable selection model, Malec, Davis and Cao
(1999) use a hierarchical Bayesian model to estimate a finite population proportion when
there are binary data. Difficulty in including the selection probabilities directly in the model
forces them to make an ad hoc adjustment to the likelihood function and use an empirical
Bayes approach. Nandram and Choi (2010) have incorporated selection probabilities into a
nonignorable nonresponse model to analyze continuous data using a full Bayesian analysis.

In this paper, we consider the problem of making inference about a finite population
proportion when a possibly biased sample is available from it. We use the model of Nadram
et al. (2013) to investigate this problem more deeply based on simulation study. In Section 2
we describe a Bayesian predictive inference of a finite population proportion under selection
bias. In Section 3 we provide a simulation study to compare four possible estimators of
the finite population proportion under an artificial scenario. Section 4 has summary and
concluding remarks.

2. Bayesian estimation under selection bias

We consider a finite population of N units, and we view this finite population as a random
sample from a superpopulation which is a hypothetical infinite population. However, the
sample from the finite population can be biased. That is, a probability sample of size n
is taken with selection probabilities. The selection probabilities are observed only for the
sampled values. These selection probabilities are adjusted by the design scientists because
of various reasons such as nonresponse and different weights from various sources.
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2.1. Modeling

Suppose each individual does, y = 1, or does not, y = 0, have a characteristic. Thus,

let y;|p i Bernoulli(p),i = 1,...,N and m;,i = 1,..., N, be the corresponding selection
probabilities. Note that p is the proportion of ones in the entire superpopulation. A sample
S of size n is taken from the finite population; also let S denote the set of nonsampled values.
Letting y, denote the vector of sampled values and y; denote the vector of nonsampled
values. Let the sampled values be y1, ..., y,. Let P = Zf\;l yi/N denote the finite population
proportion. In design-based survey analysis, P is a fixed unknown quantity, but in Bayesian
inference P is a random variable which is to be predicted. Our main interest is to predict P
when a biased sample is available.

We assume that the sample selection probabilities (1, ..., ,) have support over the set
me, w=1,...,U. That is, m;,% = 1,...,n, have a histogram where the midpoints of the
categories are the 7. Throughout these 7 are assumed known and the m; are assumed
to be random quantities. The distribution of the selection probabilities, given the binary
response ¥;, is

Pr(mi=m, |0,y =y) =04y, u=1,....U, y=0,1, i=1,...
and id
yi | p ¥~ Bernoulli(p),i =1,..., N.
Following Malec, Davis and Cao (1999), it is easy to show that

Y(1 — p)l—¥
P =y 7=, 0,p) = —u(L=D) (2.1)

2, Ouyp? (1 =)ty

and ) )
* Y(1 — p)l-¥
P(Y =y|0,p) = 2T b 1 =p) —. (2.2)
2oy 2on Tibuyp? (1 —p)t=y
The sampled data actually come from the probability mass function in (2.2) and the entire
population is described by P(Y =y | p) = p¥(1 — p) =Y,y = 0,1, thereby showing how the
selection bias enters into the model. Note that in (2.1), P(Y = y|m = 7%, 0, p) is a weighted
distribution with weights w = W and P(Y = y | p) is distribution of the
y Yuy
population without selection bias.
Since the sampling units are independent, the joint density of the entire sample is

ngl(ﬁ@uo)g““ H5:1(729u1)g“1 Pl — p)(n—s) (2.3)
P>, mibur + (1 = p) 30, miOuo]” ’ '

where s = . ¢ ¥i, guo is the cell count for category u for y = 0 and g, is the cell counts for

category u for y = 1. Note that 25:1 Juo =N — S, 25:1 gu1 = s and fo:l(guo + Ggu1) = n.
This likelihood includes the selection bias.
A priori we assume that p, 8y and 0, are independent, and we take

P(ys7ﬂ- | 0,]9) =

p ~ Uniform(0,1)

Oy | T~ Dirichlet(G(()O)T) and 61 | T ~ DiI’iChlet(ag_O)'r),
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where 060) and 050) are to be specified. Finally, we put a proper prior

1
p(1) = mﬂ' >0,

which is called a shrinkage prior.

2.2. Computation
Using Bayes’ theorem, the joint posterior density of p, 81,800, 7 given the data, 7, y,, is

ey (miuo) HUﬂ(w:aul)gw -
9 0 u= U= S 1 _ n—s

U 1 U 0‘ )r—1
Hu 1 9u160 T H 9 w 1
X

u=1"ul

DY)  DE"Vr) (1+7)*

(2.4)

where 25:1 guo = n— s and 23:1 gu1 = s. For convenience, we drop 7r from the condition-
ing.

Using the joint posterior density in (2.4) and assuming the n} are fixed and known, to
perform the Gibbs sampler, we need the conditional posterior densities, given by

~ Hg T, 0710 9guo ,
G1(00|01,p,7,y,) [a1p+1ao T HQG”O v

U u
Hu 1 7T GU1 gt 997417' 1
TL

[a1p + ao(1 —
1
la1p + ao(1 = p)]"

3 F(T) 2 U 09607—1 09117—1
6y,0 7 Zw0  Zul
g4(7— | 0,91,P, ys) S8 <1 + 7_) ul;[ F(auoT) 1—\(9“17_) )

1

G2(01100,p,7,y,) x

§3(p‘0070177-7ys) X ps(lip)nisv

and

where a, = > 750y, y=0,1.

Because of accept-reject method within the Gibbs chain, this Gibbs sampler is a bit slow.
We use an alternative procedure that avoids the accept-reject algorithm within the Gibbs
sampler. We make a one-to-one transformation from p to ¢ via ¢ = #{)’EFP). To accelerate
the Gibbs sampler, we integrate out ¢ from the joint posterior. So we generate samples for
p independently with other parameters using the simple accept-reject algorithm. Then we
execute the Gibbs sampler for 01, 8¢, 7 using a grid method. For details, see Nandram et al.
(2013).

Once p is estimated, we draw the entire finite population values, y1,...,yn, independently
from Bernoulli(p). Here, we simply need Zivzl yi | p ~ Binomial(N,p). So really we have
corrected the observed biased sample and replaced it by a surrogate sample for every p that
we obtained from the nonignorable selection model.
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2.3. Estimation

Let w(p | y,, ) denote the posterior density of p. Note again that p is the proportion of
ones in the entire superpopulation (i.e., the selection bias has been removed). Thus,

(P |y, ) = / (P | p)(p | g, m)dp.

Once samples are obtained from the posterior density of p, it is now easy to take a census of
the entire population using the composition method. To every sample of p¥), t = 1, ..., T, ob-

tained from the Gibbs sampler, a sample of P, say Pl(t), is obtained by drawing Zf\il y; from
Binomial(N, p®)) and dividing the result by N. Thus, we have obtained a Rao-Blackwellized

estimator of the posterior density of P. The postrior mean is given by P, = Zthl Pl(t) /T.
Alternatively we can use the posterior density of ¢ as a mixing distribution in the com-
position method. To every sample of ¢, t = 1,..., T, obtained from the Gibbs sampler, we

obtain a sample of P, say PQ(t)7 by drawing Zf\il y; from Binomial(N,¢®) and dividing it
by N. The postrior mean is given by P, = Ethl Pz(t)/T.

Finally we write P = (3 _,cg¥:i + > ;c5¥:)/N. Since the seen part s = > . ¢ y; is known,
we obtain a sample of P, say P:,Et), by drawing ), s ¥; from Binomial(N — n,p®) using
every sample of p*), t = 1,....T, obtained from the Gibbs sampler. Thus we obtain the
postrior mean Py = 23:1 P?ft)/T.

Remark 2.1 An ignorable selection model for the binary variables y;,i =1,..., N, is
vi | p “ Bernoulli(p) and p ~ Uniform(0, 1).

Then p | s i Beta(s + 1,n — s + 1). Since ), 5 %i|p ~ Binomial(N — n,p), we can draw
directly ;.5 v: using samples of p obtained from the Beta posterior. Thus we can obtain
the estimator of P = (s + >, 5¥:)/N easily. We call it Pp.

3. Numerical studies

We illustrate the results in preceding section with an analysis of one simulated data set.
We generate a finite population of size N = 500 with selection probability 7. Then a sample
of size n = 50 is taken from this finite population. The outline of the generation is as follows.

Set 7 =100, p=0.5, f =n/N, a =09, uo = af, ju = f/a.

Generate u ~ U(0,1). If u < p then we set y; = 1; otherwise set y; =0, =1,--- | N.
e If y; = 1 then we generate m; ~ Beta(u17, (1 — p1)7); if 3 = 0 then we generate
T~ Beta(uoﬂ', (1 — /J,O)T) for 1 = 17 ce ’N.

nm;

Z'Ii\le mi’

Sample n units by systematic PPS sampling with probabilities m; =

Using the simulated data set, we compare the four estimates for the finite population
proportion P = Zil y;. Specifically we calculate the posterior mean (PM), the posterior
standard deviation (PSD), the 95% credible interval (CrI), and the 95% HPD interval (HPD).
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The results are provided in Table 3.1 and are robust to different 7, p and a values. From
Table 3.1, we may find that the estimator Py is well behaved in the sense that it is closer to
true P = 0.48 than others. But from Table 3.1, it appears that the estimator Py provides
shorter 95% credible interval and 95% HPD interval than others.

Table 3.1 Posterior means, associated posterior standard deviations, and credible intervals

Estimator PM PSD Crl HPD
P 1490 071 (.352, .632) (.332, .640)
Py 538 .070 (.404, .674) (.378, .688)
Py 494 .064 (.374, .618) (.364, .628)
B 536 .069 (.416, .664) (.398, .668)

The four estimators of the posterior density of P are shown in Figure 3.1. Notice that
the solid line represents the posterior density for the finite population proportion and the
dashed vertical line represents the true finite population proportion P = 0.48 in Figure 3.1.
As one might expect, the posterior densities corresponding to Py and P; looks much better
than others in the closeness of the true P.
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Figure 3.1. The four posterior densities of the finite population proportion

Next, in order to assess the performance of the estimators based on nonignorable selection
model in the selection bias problem, we design a simulation study. Using the same algorithm
as the above, we generate 1,000 binary populations of size N = 500 with selection probability
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m with ¢ = 1.0,0.9,0.95,0.98,0.99,0.995. Then a sample of size n = 50 is taken from each
finite population.

To compare the performance of four possible estimators, we compute the several frequentist
measures. First, we calculate the finite population proportion P, the posterior mean
PM™ and the posterior standard deviation PSD™, h = 1,...,1000. Then we compute
the absolute bias AB™ = |[PM ™) — P(M)| and the root mean squared error RMSE™ =
VPSD™M2 + ABM2 h = 1,...,1000. Using these frequentist quantities we obtain AB =
ﬁ }LO:OP AB™ and RMSE = ﬁ }LO:(]S RMSEW™ . Also we compute the 95% credible
interval for each of the 1,000 simulated runs. Then we look at the width (W) and the
credible incidence (I™), where W) means the length of the 95% credible interval and
I =1 if the 95% credible interval contains the true value P and I") = 0 otherwise. Then
we calculate C' = Zfll(ff I /1000 and W = 2]110:013 W) /1000. The results with numerical
standard errors (NSE) are reported in Table 3.2.

Table 3.2 Comparison of four estimates based on absolute bias, root posterior mean squared error,
coverage and width of 95% credible intervals
a Estimators AB NSEAB RMSE NSERJ\/ISE C NSEC w NSEW

1.0 P .002 .004 119 .001 .994 .002 .381 .001
1.0 Py .000 .004 .093 .001 953 .007 .276 .000
1.0 Py .102 .004 117 .001 981 .004 344 .001
1.0 By .100 .004 .098 .001 .896 .010 .253 .000
.90 Py .046 .004 121 .001 .998 .001 .383 .001
.90 Py .052 .004 .097 .001 951 .007 .276 .000
.90 Py .058 .004 .110 .001 992 .003 .345 .001
.90 By .051 .004 .089 .001 .944 .007 .252 .000
.95 Py .046 .004 121 .001 .998 .001 .383 .001
.95 Py .052 .004 .097 .001 951 .007 .276 .000
.95 P .058 .004 .110 .001 992 .003 .345 .001
.95 Py .051 .004 .089 .001 944 .007 .252 .000
.98 P .022 .004 120 .001 991 .003 .384 .001
.98 Py .022 .004 .094 .001 .963 .006 .276 .000
.98 P .080 .004 113 .001 .983 .004 347 .001
.98 B .079 .004 .093 .001 917 .009 .253 .000
.99 P .007 .004 121 .001 993 .003 .385 .001
.99 Py .012 .004 .094 .001 .964 .006 .275 .000
.99 Ps .094 .004 117 .001 .984 .004 .348 .001
.99 B .089 .004 .096 .001 915 .009 .253 .000
.995 P .001 .004 118 .001 .989 .003 .383 .001
.995 Py .001 .004 .093 .001 961 .006 .275 .000
.995 Ps .099 .004 .116 .001 .983 .004 .345 .001
.995 B .099 .004 .097 .001 911 .009 .253 .000

An inspection of Table 3.2 reveals that the estimators 131 and ]52 are better than others
in the sense of the closeness to the true P, but 130 and 152 is better than others in the sense
of the root mean squared error. Moreover, the coverage probability of P, is closest to the
nominal value of the 95%. Also the estimator ]50 is the best and P, is the second best in the
sense of the width of the credible interval. The simulation results seems to be very similar
for a less than .9.
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4. Concluding remarks

The analysis of one simulated data set reports that Py and Pj are the good candidates in
Bayesian estimation for the finite population proportion under the nonignorable selection
model. But the simulation study indicates that there is no clear winner among four possible
estimators in the sense of frequentist measures, but overall P, would be a good choice in
selection bias problem. Our simulation study reveals that the nonignorable selection model
might be useful in the case of the weekly biased samples.
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