• Title/Summary/Keyword: Bias angle

Search Result 168, Processing Time 0.026 seconds

Extension of shuster's algorithm for spin-axis attitude and sensor bias determination (위성 회전축 및 센서 바이어스 결정을 위한 확장 Shuster 알고리즘에 관한 연구)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.238-242
    • /
    • 1994
  • Shuster's algorithm for spin-axis determination is extended to include sensor bias and mounting angle as its solve-for parameters. The relation between direct and derived measurements bias is obtained by linearizing their kinematic equations. A one-step least-square estimation technique referred to as the 'closed form' solution is used, and the solution provides a more refined and decent initial guess for the subsequent filtering process contained within the differential correction module. The modified algorithm is applied for attitude determination of a GEO communication satellite in transfer orbit, and its results are presented.

  • PDF

The Effect of Bias and Shear Angles on Compressive Characteristics of Carbon/Epoxy Plain Weave Fabrics (편향각과 전단각이 탄소섬유/에폭시 평직 복합재료의 압축특성에 미치는 영향)

  • Kim Sung-Jip;Chang Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.857-864
    • /
    • 2006
  • Various compressive specimens were fabricated using autoclave do-gassing moulding to find out the compressive characteristics of the carbon/epoxy plain weave fabric composites with respect to the bias and shear angles. The stacking angles of the bias specimens are $[0]_{10T,}\;[3]_{10T,}\;[6]_{10T,}\;[9]_{10T,}\;[12]_{10T,}\;[15]_{10T,}\;[30]_{10T,}\;[45]_{10T}$ and those of the sheared specimens are $[{\pm}37]_{10T,}\;[{\pm}32]_{10T,}\;[{\pm}28]_{10T,}\;[{\pm}22]_{10T,}$ respectively. In order to verify the effect of micro-tow structures on compressive strength and modulus of the composites, compressive test specimens of uni-directional carbon/epoxy composites with the same materials and the same stacking conditions were fabricated. The modulus and strength of both types of composite specimens were compared with the prediction results based on the CLPT and a proposed strength formula. The tow deformation and fracture modes were investigated by microscopic observation.

Adhesion of Cu on Polycarbonate with the Condition of Surface Modification and DC-Bias Sputtering Deposition (폴리카보네이트에서의 표면개질 조건과 DC-Bias Sputtering 증착에 따른 Cu 밀착성)

  • 배길상;엄준선;이인선;김상호;고영배;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The enhancement of adhesion for Cu film on polycarbonate (PC) surface with the $Ar/O_2$ gas plasma treatment and dc-bias sputtering was studied. The plasma treatment with this reactive mixture changes the chemical property of PC surface into hydrophllic one, which is shown by the variation of contact angle with surface modification. The micro surface roughness that also gives the high adhesive environment is increased by the $Ar/O_2$ gas plasma treatment. These results were observed distinctly from the atomic force microscopy (AFM). The negative substrate dc-bias effect for the Cu adhesion on PC was also investifated. Accelerated $Ar^{+}$ lons in sheath area of anode bombard the bare surface of PC during initial stage of dc bias sputtering. PC substrate. therefore, has severe roughen and hydrophilic surface due to the physical etching process with more activated functional group. As dc-bias sputtering process proceeds, morphology of Cu film shows better step coverage and dense layer. The results of peel test show the evidence of superiority of bias sputtering for the adhesion between metal Cu and PC.C.

Impact Angle Control with Time Varying Continuous Biased PNG for Non-maneuvering Target (시변 연속적 편향 비례항법 유도법칙을 이용한 이동표적의 충돌각 제어)

  • Park, Jang-Seong;Kwon, Hyuck-Hoon;Park, Sang-Hyuck;Kim, Yoon-Young;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.742-751
    • /
    • 2018
  • In this paper, we propose a time varying biased proportional navigation guidance law that controls the impact angle under Field-of-View(FOV) and the acceleration limit of the missile. The proposed law is composed of three stages in consideration of the FOV limitation. Since the bias directly affects the acceleration at each stage, the final bias value of the previous stage becomes the initial bias value of the next stage when the stage is switched. In addition, the impact angles were controlled by judging whether impact angles were reached in consideration of engagement conditions and physical constraints.

Joint Range and Angle Estimation of FMCW MIMO Radar (FMCW MIMO 레이다를 이용한 거리-각도 동시 추정 기법)

  • Kim, Junghoon;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.169-172
    • /
    • 2019
  • Frequency-modulated continuous wave(FMCW) radars with array antennas are widely used because of their light weight and relatively high resolution. A usual approach for the joint range and angle estimation of a target using an array FMCW radar is to create a range-angle matrix with the deramped received signal, and subsequently apply two-dimensional(2D) frequency estimation methods such as 2D fast Fourier transform on the range-angle matrix. However, such frequency estimation approaches cause bias errors since the frequencies in the range-angle matrix are not independent. Therefore, we propose a new maximum likelihood-based algorithm for joint range and angle estimation of targets using array FMCW radar, and demonstrate that the proposed algorithm achieves the Cram?r-Rao bounds, both for range as well as angle estimation.

Removal of bias and conjugate image using the modified conoscopic holography (변형된 코노스코픽 홀로그래피를 이용한 바이어스와 공액영상의 제거)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.22-27
    • /
    • 2015
  • Conoscopic holography, which consists of two linear polarizers and two wave plates, and an uniaxial crystal, is incoherent holographic technology for three-dimensional display. In the uniaxial crystal, the wave from object divides into extraordinary and ordinary waves and phase difference between two waves is caused by the different refractive index of two waves. Four intensity patterns, which are made by phase difference, are obtained using LCLV(liquid crystal light valve) and conoscopic holography system. By combining four intensity patterns, the complex hologram without bias and conjugate image. In this paper, we propose the optimized system, which consists of a wave plate and a linear polarizer, and uniaxial crystal. In the proposed system, it doesn't need LCLV. By adjusting the azimuth angle of a linear polarizer and a wave plate, we derive four intensity patterns in recording plane. We demonstrate theoretically that the complex hologram with bias and a conjugate image is obtained using the proposed system.

Implementation and Design of Inertial Sensor using the estimation of error coefficient method for sensing rotation

  • Lee, Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.95-101
    • /
    • 2020
  • We studied the Implementation and design of inertial sensor that enables to improve performance by reduce the noise of rotor which Angle of inclination. Analyze model equation including motion equation and error, signal processing filter algorithm on high frequency bandwidth with eliminates error using estimation of error coefficient method is was designed and the prototype inertial sensor showed the pick off noise up to 0.2 mV and bias error performance of about 0.06 deg/hr by the experiments. Accordingly, we confirmed that the design of inertial sensor was valid for high rotation.

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.

Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot (주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계)

  • Cho, Yoon Hee;Lee, Sang Cheol;Hong, Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System

  • Suh, Sang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.75-88
    • /
    • 1995
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship's direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dimension in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF