• Title/Summary/Keyword: BiTe

Search Result 311, Processing Time 0.035 seconds

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Production of Te Electrode for Low Surge Vacuum Circuit Breaker (저surge 진공 차단기용 Te 전극 제조)

  • 김봉서;우병철;변우봉;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.123-128
    • /
    • 1996
  • As electrode materials like as Cu-Pb, Cu-Bi, WC-Ag, W-Ag for vacuum circuit breaker have high chopping current or bad insulation-recovery characteristics, it can affect induction machinery like as transformer and motor. To produce low surge electrode material, it have been suggested Co-Ag-Te electrode which were infiltrated with Ag-Te intermetallic compound into sintered Co matrix in vacuum. In this paper, we would like to represent that production method and microstructure of Co-Ag-Te electrode material in each condition. The microstructure and characteristics of Ag-Te intermetallic compound and Co-(Ag-Te) electrode were investigated by using optical microscope, SEM, XRD, EPMA.

  • PDF

Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations

  • Jeong, Inki;Yoon, Young-Gui
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1541-1545
    • /
    • 2018
  • We study lattice thermal conductivity of $Sb_2Te_3$ using molecular dynamics simulations. The interatomic potentials are fitted to reproduce total energy and elastic constants, and phonon properties calculated using the potentials are in reasonable agreement with first-principles calculations and experimental data. Our calculated lattice thermal conductivities of $Sb_2Te_3$ decrease with temperature from 150 K to 500 K. The in-plane lattice thermal conductivity of $Sb_2Te_3$ is higher than cross-plane lattice thermal conductivity of $Sb_2Te_3$, as in the case of $Bi_2Te_3$, which is consistent with the anisotropy of the elastic constants.

Thermal Distribution of Bi-Te Thermoelectric Module with the thickness of Polymer Sheet (고분자 필름의 두께변화에 따른 Bi-Te계 열전모듈의 열분포 특성)

  • Byeon, Jong-Bo;Kim, Bong-Seo;Park, Soo-Dong;Lee, Hee-Woong;Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1675-1677
    • /
    • 2005
  • In case of attaching thermoelectric module and heat source, the polymer sheet is attached on the $AL_{2}O_3$ plate, which Is cold and hot side of thermoelectric module, in order to enhance mechanical safty of the system. It is impossible to calculate the exact distribution of temperature and flow pattern of inner gap of thermoelectric module. Therefore CFD(Computational Fluid Dynamics) analysis was executed to determine the thermo-fluid phenomena and distribution by Fluent. As the result of these analysis, heat transfer was dominated by conduction and the difference of temperature was linear distribution according to the thickness of polymer sheet.

  • PDF

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF

Electromigration in Molten-phase Ge2Sb2Te5 and Effects of Doping on Atomic Migration Rate

  • Joo, Young-Chang;Yang, Tae-Youl;Cho, Ju-Young;Park, Yong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.43-47
    • /
    • 2012
  • Electromigration in molten $Ge_2Sb_2Te_5$ (GST) was characterized using pulsed DC stress to an isolated line structure. When an electrical pulse was applied to the GST, GST lines were melted by Joule heating, and Ge and Sb atoms migrate to the cathode, whereas Te atoms migrate to the anode. This elemental separation in the molten GST was caused by an electrostatic force-induced electromigration. The effects of O-, N-, and Bi-doping on the electromigration were also investigated, and atomic mobility changes by the doping were investigated by quantifying $DZ^*$ values. The Bi -doping did not affect the $DZ^*$ values of the constituent atoms in the molten GST, but the D$DZ^*$ values decreased by O-doping and N-doping.

Occurrence and Mineral Chemistry of Pb-Ag-Bi-S System Minerals in the Nakdong As-Bi Deposits, South Korea (낙동 비소-비스무스 광상의 Pb-Ag-Bi-S계 광물의 산출양상과 화학조성)

  • Shin, Dong-Bok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.643-651
    • /
    • 2006
  • The Pb-Ag-Bi-S system minerals such as galena-matildite solid solutions, cosalite and heyrovskyite occur in the Nakdong As-Bi deposits. Galena-matildite solid solutions commonly coexisting with native bismuth fill in microfractures of pyrite grains and form irregular shapes. Cosalite forms composite grains including native bismuth, heyrovskyite and Bi-Te-S system minerals in the matrix of quartz vein. Matildite from the Nakdong deposits has an end member composition, $Ag_{1.07-1.11}Bi_{1.12-1.20}S_2$, and an excess concentration of $0.3{\sim}2.4$ mole % $Bi_2S_3$ compared to the stoichiomeoic value. PbS concentrations in $PbS-AgBiS_2$ solid solutions do not exceed 54 mole %. The average chemical composition of cosalite in the study area is $Pb_{1.79}Bi_{2.29}Ag_{0.12}S_5$. Pb is slightly depleted compared to the ideal composition, but the concentrations of Ag and Cu reach as much as 1.47 wt.% and 0.27 wt.%, respectively. Heyrovskyite has the chemical formula of $Pb_{5.01}Ag_{0.26}Bi_{2.70}S_9$ suggesting that there occurs the coupled substitution of $2Bi^{3+}$ for $3Pb^{2+}$ as well as that of $Ag^++Bi^{3+}$ for $2Pb^{2+}$. The genetic condition of Pb-Ag-Bi-S system minerals can be confined to the temperature of $220{\sim}270^{\circ}C$ and the pressure below 200 bars.

Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying

  • Yoon, Suk-min;Nagarjuna, Cheenepalli;Shin, Dong-won;Lee, Chul-hee;Madavali, Babu;Hong, Soon-jik;Lee, Kap-ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.