• Title/Summary/Keyword: Bi-Fuel

Search Result 108, Processing Time 0.024 seconds

Growth and characterization of $Bi_2O_3$ nanowires

  • Park, Yeon-Woong;Ahn, Jun-Ku;Jung, Hyun-June;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.60-60
    • /
    • 2010
  • 1-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Bismuth oxide($Bi_2O_3$) is an important p-type semiconductor with main crystallographic polymorphs denoted by $\alpha-$, $\beta-$, $\gamma-$, and $\delta-Bi_2O_3$[1]. Due to its unique optical and electrical properties, $Bi_2O_3$ has been extensively investigated for various applications in gas sensors, photovoltaic cells, fuel cells, supercapacitors[2-4]. In this study, $Bi_2O_3$ NWs were grown by two step annealing process: in the first step, after annealing at $270^{\circ}C$ for 10h in a vaccum($3{\times}10^{-6}$ torr), we can obtain the bismuth nanowires. In the second step, after annealing at $300^{\circ}C$ for 2h in $O_2$ ambient, we successfully fabicated $Bi_2O_3$nanowires.

  • PDF

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.

A Preliminary Design Concept of the HYPER System

  • Park, Won S.;Tae Y. Song;Lee, Byoung O.;Park, Chang K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.42-59
    • /
    • 2002
  • In order to transmute long-lived radioactive nuclides such as transuranics(TRU), Tc-99, and I- l29 in LWR spent fuel, a preliminary conceptual design study has been performed for the accelerator driven subcritical reactor system, called HYPER(Hybrid Power Extraction Reactor) The core has a hybrid neutron energy spectrum: fast and thermal neutrons for the transmutation of TRU and fission products, respectively. TRU is loaded into the HYPER core as a TRU-Zr metal form because a metal type fuel has very good compatibility with the pyre- chemical process which retains the self-protection of transuranics at all times. On the other hand, Tc-99 and I-129 are loaded as pure technetium metal and sodium iodide, respectively. Pb-Bi is chosen as a primary coolant because Pb-Bi can be a good spallation target and produce a very hard neutron energy spectrum. As a result, the HYPER system does not have any independent spallation target system. 9Cr-2WVTa is used as a window material because an advanced ferritic/martensitic steel is known to have a good performance under a highly corrosive and radiation environment. The support ratios of the HYPER system are about 4∼5 for TRU, Tc-99, and I-129. Therefore, a radiologically clean nuclear power, i.e. zero net production of TRU, Tc-99 and I-129 can be achieved by combining 4 ∼5 LWRs with one HYPER system. In addition, the HYPER system, having good proliferation resistance and high nuclear waste transmutation capability, is believed to provide a breakthrough to the spent fuel problems the nuclear industry is faced with.

A Study on the Chamical and Physical Characteristics of Ultrasonic-Energy-Added Diesel Fuel (초음파 에너지 부가 지젤연료의 화학적, 물리적 특성에 관한 연구)

  • 최두석;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • This study investigated the characteristics of ultrasonic-energy-added diesel fuel. We compared the characteristics used H-NMR spectrum, FT-IR spectrum, viscosity and surface tension between conventional diesel fuel and ultrasonic-energy-added diesel fuel. The result are obtained as follow : We knew that ultrasonic energy result to reduce BI and weaken viscosity and surface tension. Also, the ultrasonic energy caused to reduce aromatics Ha and increase Alkanes Hγ. The effect of ultrasonic-energy-added dieselfuel was principally caused by change of chemical structures and a physical characteristics.

  • PDF

Synthesis of Pt-Bi/Carbon Electrodes by Reduction Method for Direct Methanol Fuel Cell (환원법에 의한 직접 메탄올 연료전지(DMFC)용 Pt-Bi/Carbon 전극제조)

  • Kim, Kwan Sung;Kim, Min Kyung;Noh, Dong Kyun;Tak, Yongsug;Baeck, Sung-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • Pt-Bi/C catalysts supported on carbon black with various Pt/Bi ratios were synthesized by a reduction method. Chloroplatinic acid hydrate ($H_2PtCl_6{\cdot}xH_2O$) and bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3{\cdot}5H_2O$) were used as precursors for Pt and Bi, respectively. Before loading metal on carbon, heat treatment and pretreatment of carbon black in an acidic solution was conducted to enhance the degree of dispersion. The physical property of the synthesized catalysts was investigated by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern of untreated Pt-Bi/C catalyst showed BiPt and $Bi_2Pt$ peaks in addition to Pt peaks. These results imply that Bi atoms were incorporated into the Pt crystal lattice by Pt-Bi alloy formation. The catalytic activity for methanol oxidation was measured using cyclic voltammetry in a mixture of 0.5 M $H_2SO_4$ and 0.5 M $CH_3OH$ aqueous solution. The addition of proper amount of Bi was found to significantly improve catalytic activity for methanol oxidation. The catalytic activity for methanol oxidation was closely related to the stability between electrode and electrolyte. In order to investigate the stability of catalysts, chronoamperometry analysis was carried out in the same solution at 0.6 V.

Numerical and Experimental Analysis of Pressure Drop in a Bipolar Plate channel of a Proton Exchange Membrane Fuel Cell (연료전지 분리판 압력손실 감소를 위한 수치해석 및 실험적 연구)

  • Kim, Hee-Su;Kang, Kyung-Tae;Choi, Yun-Ki;Lee, Su-Dong
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • Fuel cell makes electricity through chemical reaction. Bipolar-plate distribute hydrogen, oxidation using channel geometry condensation of water vapor inside channels of bipolar-plates lowers efficiency of fuel cell. Usually high pressured gas supply is used to solve the water condensation problem with serpentine type channel geometry. In this study, a new channel geometry shows feasible to minimize lowering efficiency due to water condensation through numerical and experimental analysis.

Fabrication and Characterization of BixCel-xO2-x/2 Electrolytes for IT-SOFC (중온형 고체산화물 연료전지BixCel-xO2-x/2 전해질의 제조 및 특성평가)

  • Han, Ju-Hyeng;Lee, In-Sung;Lee, Dokyol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.808-815
    • /
    • 2005
  • [ $Bi_xCe_{l-x}O_{2-x/2}$ ](BD C : Bismuth Doped Ceria) powders with x = 0.1, 0.2, and 0.3 were synthesized using the Glycine Nitrate Process (GNP). They were then calcined at $500^{\circ}C$ for 2 hand sintered in a pellet or rod form at 900, 1000 or $1100^{\circ}C$ for 4 h for characterization as the alternative electrolyte material for intermediate temperature solid oxide fuel cells. The BDC powder consisted of a single phase of $CeO_2-Bi_2O_3$ solid solution in the as-synthesized state as well as in the as-calcined state with a mean powder size of 4.5nm in the former state and 6.5 - 10.1nm in the latter. On the contrary, the second phase of $\alpha-Bi_2O_3$ was observed to have been formed in the sinter with its amount increasing roughly with increasing temperature or $Bi_2O_3$ content. The BOC powder was superior in sinterability to other alternative electrolyte materials such as GDC, ScSZ, and LSGM with the minimum sintering temperature for a relative density of $95\%$ or larger as low as $1100^{\circ}C$. The ionic conductivity of BOC increased with $Bi_2O_3$ content and the maximum value of 0.119 S/cm was obtained at $800^{\circ}C$ for $Bi_{0.3}Ce_{0.7}O_{1.85}$.

A Study on the Separation of Long-lived Radionuclides and Rare Earth Elements by a Reductive Extraction Process (환원추출에 의한 장수명핵종과 희토류 원소의 분리 연구)

  • 권상운;안병길;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.421-425
    • /
    • 2003
  • The reductive extraction process is an important step to refine the TRU product from the electrorefining process for the preparation of transmutation reactor fuel. In this study, it was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as a surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with a argon gas. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. The reduction reaction was equilibrated within 3 hours after the Li addition. Three eutectic salt systems were compared and Zr was successfully separated from the rare earth elements in all the three salt systems.

  • PDF

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.