• Title/Summary/Keyword: Bi-2223 tape

Search Result 212, Processing Time 0.021 seconds

The change of critical current with crack formation in a Bi-2223/Ag tape (크랙에 의한 Bi-2223/Ag 테이프의 임계전류 변화)

  • 박을주;설승윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.249-252
    • /
    • 2002
  • The change of critical current with a crack formation in a Bi-2223/Ag tape was studied by experimental and numerical analyses. Critical current of Bi-2223/Ag tape was measured with a continuous DC-power supply. The current-voltage relation of a Bi-2223/Ag tape is measured by the four point method. Numerical method is used to solve two dimensional heat conduction equation. By comparing the experimental and numerical results, the validity of numerical method is verified.

  • PDF

Fault Current Characteristics of a Bi-2223 Tape (Bi-2223테이프의 사고전류 특성)

  • 류경우;차귀수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.65-67
    • /
    • 2001
  • Temperature and resistance of a Bi-2223 tape for fault currents up to 10 $I_{c}$ were measured in two types of samples taking into account real applications. The results indicate that the Bi-2223 tape is safe from burn-out for fault currents with a few cycles up to 10 I$_{c}$. For fault currents of over an order of magnitude higher than the nominal current, the temperature of the Bi-2223 tape depends strongly on fault durations.s.

  • PDF

Effect of the Neighboring Tape′s AC Currents on Transport Current Loss of a Bi-2223 Tape (인접 교류전류가 Bi-2223테이프의 통전손실에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.251-256
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current simultaneously. AC loss taking into account such real applications is a crucial issue for power applications fo the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1./5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured trasprot losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents.The trasport losses do not depend on the frequency of the neighboring tape's AC currents but is arrangements in the range of small current especially.

  • PDF

Self Field Effect Analysis of Bi-2223 Tape-Stacked-Cable With Constant Current Density Assumption

  • Nah, Wansoo;Joo, Jinnho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 2000
  • In this paper, we analyze self field effects of Bi-2223 tape-stacked cable assuming constant current density in the cross section of stacked cable. Generally, the critical current of Bi-2223 tape-stacked-cable in much less than the total summation of critical currents of each tape, which is mainly due to the self magnetic fields of the cable itself. Therefore, to predict the critical current of Bi-2223 tape-stacked-cable, we needs to analyze the self filed effects on the stacked cable as well as critical current density data(J$\_$C/) of one tape. To make it more complex, the critical current degradation of Bi-2223 tape is an-isotropic; the critical current is lower in the normal magnetic field(to the tape surface) than in the parallel field. In the paper, a novel approach to predict the critical current of a Bi-2223 tape-stacked-cable from a J$\_$C/-B curve of one tape is presented with the assumption of constant current density across the stacked cable, The approach basically includes the load analysis of the stacked tapes, and its usefulness is confirmed by the experimental data.

  • PDF

Fabrication and performance of 100 m Class Bi-2223 High Temperature Superconducting Tape (100 m급 Bi-2223 고온초전도 선재 제조 및 특성)

  • 하홍수;오상수;하동우;장현만;이남진;류강식;이준석
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.15-19
    • /
    • 1999
  • For large scale applications of high temperature superconductor (HTS) such as transmission cables, motors and generators, long length of flexible HTS conductor is required. Currently, Bi-2223 HTS tape is capable of being fabricated in longer than 100 m length by industrial processes. In this study, we fabricated 100 m 19 filamentary Bi-2223 ($Bi_{1.8}Pb_{0.4}Sr_2Ca_2O_{10+x}$) HTS tape by PIT (Power in Tube) process. Critical current(IC) of this long length tape was measured 18.5 A at 77K, self field. Critical current of 100 m length tape was mainly resulted from the increase of inhomogeneity in oxide from the increase of inhomogeneity in oxide layer. Engineering critical current (Je=Ic/total tape cross-section area) that is important factor for practical applications and fabrication cost was measured 2.2 kA/cm2.

  • PDF

Fault Current Characteristics of a Bi-2223 Tape (Bi-2223 테이프의 사고전류 특성)

  • 류경우;최병주;차귀수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • A Bi-2223 tape has been developed for low-field Power applications such as Power cables or transformers working at liquid nitrogen temperature For such applications it is required to understand fault current characteristics of the Bi-2223 tape. In this paper we report fault current characteristics using two types of samples, straight sample and pancake coil sample. It was found that the fault current characteristics of the Bi-2223 tape are independent of external fields and frequencies . However they depend on electrical insulations and fault durations strong1y Also it was shown that the fault current characteristics in the insulated straight sample are similar to those in the pancake sample with a conductor insulation. Finally. it was shown that the Pancake sample with a layer insulation has better characteristics than that with a conductor insulation fur fault currents.

  • PDF

Properties of Bi-2223/Ag HTS tapes using different content of precursors (조성이 다른 전구체 분말에 따른 Bi-2223/Ag 초전도 테이프의 특성 변화)

  • Ha, Dong-Woo;Yang, Joo-Saeng;Ha, Hong-Soo;Oh, Sang-Soo;Hwang, Sun-Yuk;Lee, Dong-Hoon;Choi, Jung-Kyu;Lee, En-Yong;Kwon, Young-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.69-72
    • /
    • 2003
  • Bi-2223 superconducting wires were fabricated by stacking, drawing process with different precursor powders and different heat-treatment histories. The precursor powders were 2 kinds of Pb content. And a part of the tapes were experienced pre-annealing process which caused tetragonal structure of Bi-2212 phase to orthorhombic structure of it was during drawing process. We confirmed the transformation of Bi-2212 phase from tetragonal structure to orthorhombic structure and reduction of second phases. XRD and DC magnetization analysis were performed in order to investigate the fraction of Bi-2223 phase in Bi-2223/Ag HTS tape. We could achieve best Ic of 70 A class at the Bi-2223/Ag tape using low Pb content of precursor powder and experienced pre-annealing process. DC magnetization analysis was useful to investigate the fraction of Bi-2223 phase in the Bi-2223/Ag tape.

  • PDF

The effects of moisture content in precursor powder for Bi-2223/Ag tape (Bi-2223/Ag 선재의 전구 분말에서 수분함량에 따른 효과)

  • 김성환;유재무;고재웅;김영국;김철진
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.162-167
    • /
    • 2003
  • The critical current value of Bi-2223/Ag tape can be influenced by various factors. In particular, it was known that properties of precursor powders could affect the formation of Bi -2223 and grain growth rate of the same. Since, moistures and organic matters can easily contaminate the precursor powders of Bi-2223 tapes and degrade properties of superconductors, the precursor powders should be kept in optimal conditions to minimize contamination. In this study, the effect of moisture and organic matters has been investigated. A Bi-2223/Ag tape contaminated with a large amount of moisture and organic matter has been characterized by low critical current values and bubbling. It has been found that as the quantity of moisture increases, the Bi-2223 phases are formed at lower temperature and the amount of non-superconducting phase increases.

  • PDF

Characterisitics of the over current of Bi-2223 HTS tape (Bi-2223 고온초전도선의 과전류 통전특성)

  • Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Kim, Hae-Jun;Kwag, Dong-Soon;Seong, Ki-Chul;Kim, Hae-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.284-285
    • /
    • 2005
  • Bi-2223 High-Temperature Superconducting(HTS) tape is one of the most widely used HTS tape for power application. Characteristics of the over current of HTS tape with different sheath are described. This paper presents the basic properties such as temperature and resistivity rise of the Bi-2223 HTS tape which is exposed to the over current. It is expected that results from this study can be utilized as basic data in designing superconducting power devices.

  • PDF

Effect of an External AC Magnetic field on Dynamic Resistance and Loss Characteristic in a Bi-2223 Tape (외부 교류자장이 Bi-2223테이프의 동저항 및 손실특성에 미치는 영향)

  • Ryu, Kyung-Woo;Choi, Byoung-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.473-477
    • /
    • 2005
  • A Bi-2223 tape has been developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called 'dynamic resistance' We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external at magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results ana discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.