• Title/Summary/Keyword: Bi-2212/2223 phase

Search Result 52, Processing Time 0.032 seconds

Characteristics of Plasma Sprayed BSCCO Superconductor Coatings with Annealing Time After Partial Melt Process (BSCCO 플라즈마 용사피막의 부분용융열처리 후 어닐링 시간에 따른 초전도 특성)

  • Park, Jeong-Sik;Lee, Seon-Hong;Park, Kyeung-Chae
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • $Bi_2Sr_2CaCu_2O_x$(Bi-2212) and $Bi_2Sr_2Ca_2Cu_3O_y$(Bi-2223) high-Tc superconductors(HTS) have been manufactured by plasma spraying, partial melt process(PMP) and annealing treatment(AT). A Bi-2212/2223 HTS coating layer was synthesized through the peritectic reaction between a 0212 oxide coating layer and 2001 oxide coating layer by the PMP-AT process. The 2212 HTS layer consists of whiskers grown in the diffusion direction. The Bi-2223 phase and secondary phase in the Bi-2212 layer were observed. The secondary phase was distributed uniformly over the whole layer. As annealing time goes on, the Bi-2212 phase decreases with mis-orientation and irregular shape, but the Bi-2223 phase increases because a new Bi-2223 phase is formed inside the pre-existing Bi-2212 crystals, and because of the nucleation of a Bi-2223 phase at the edge of Bi-2212 crystals by diffusion of Ca and Cu-O bilayers. In this study the spray coated layer showed superconducting transitions with an onset Tc of about both 115 K, and 50 K. There were two steps. Step 1 at 115 K is due to the diamagnetism of the Bi-2223 phase and step 2 at 50 K is due to the diamagnetism of the Bi-2212 phase.

Technique development of Bi-2212/2223 superconductor thick film manufacturing by plasma spraying and heat treatment (플라즈마 용사 및 열처리 공정을 통한 Bi-2212/2223 초전도체 thick film 제조의 기술 개발)

  • Lee, Seon-Hong;Cho, Sang-Hum;Ko, Young-Bong;Park, Kyeung-Chae
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.262-264
    • /
    • 2005
  • $Bi_{2}Sr_{2}CaCu_{2}O_{x}$(Bi-2212) and $Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{y}$(Bi-2223) high-$T_{c}$ superconductor(HTS) coating have been prepared by plasma spraying and heaat treatment. The Bi-2212 HTS coating later is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating later, and $Bi_{2}Sr_{2}CaCu_{2}O_{y}$(Bi-2212) superconducting phase grow by partial melting process. The superconducting characteristic depends strongly on the conditions of the partial melting process. the Bi-2212 HTS layer consists of the whiskers grown in the diffusion direction. Above the 2212 layer, Bi-2223 phase and secondary phase was observed. The secondary phase is distributed uniformly over the whole surface. This is caused to the microcrack on the coatings surface. Despite everything, the film shows superconducting with an onset $T_{c}$ of about 115K. There are two changes steps. One changes (1step) at 115K is due to the diamagnetism of the Bi-2223 phase and the other changes (2step) at 78K is due to the diamagnetism of the Bi-2212 phase.

  • PDF

Phase Stability of Bi-2212 and Bi-2223 Thin Films Prepared by IBS Technique

  • Yang, Sung-Ho;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.12-15
    • /
    • 2001
  • Bi-2212 and Bi-2223 thin films are prepared by IBS(ion beam sputtering) technique. Three phases of Bi-2201, Bi-2212 and Bi-2223 appear as stable ones in spite of the conditions for thin film fabrication of Bi-2212 and Bi-2223 compositions, depending on substrate temperature (T $_{sub}$) and ozone pressure(PO$_3$). It is found out that these phases are limited within very narrow temperature.e.

  • PDF

A Study on Produced Region of Bi-2223 Superconducting Thin Films versus substrate temperature and oxide gas pressures for formation of single-phase Film (단상막 형성을 위해 기판온도와 산화 가스압에 따른 Bi-2223 초전도 박막의 생성 영역에 관한 연구)

  • Yang, Seung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.536-539
    • /
    • 2007
  • BSCCO am films fabricated by using the evaporation method at various substrate temperatures, Tsub and ozone gas pressures $PO_3$. Despite setting the composition of thin film Bi2223, Bi2201, Bi2212 and Bi2223 phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and $PO_3$, and it was distributed in the rezone. The XRD peak of the generated film continuously changed according to the substrate temperature. This demonstrates the existence of mixed crystal composition where the phases of Bi2201, Bi2212 and Bi2223 are mixed in the crystal structure; and the single-phase film of each phase exist in a very rezone of temperature and gas pressure.

  • PDF

Transformation of the enthalpy and the entropy in BSCCO:2212-2223 (BSCCO:2212-2223 박막의 엔탈피와 엔트로피 변화)

  • Cheon, Min-Woo;Park, No-Bong;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.589-590
    • /
    • 2005
  • BSCCO:2212-2223 thin films were fabricated by using the ion beam sputter with a evaporation method at various substrate temperatures, $T_{sub}$, and ozone gas pressures, $pO_3$. The correlation diagrams of the BSCCO phases with Tsub and $pO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 as well as Bi2212 phases come out as stable phases depending on Tsub and $pO_3$. From these results, the thermodynamic evaluation of ${\Delta}H$ and ${\Delta}S$, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase, was performed.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

Phase Stability of Bi2212 and Bi2223 Thin Films Fabricated by Ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.108-111
    • /
    • 2000
  • Bi2212 and Bi2223 thin films are fabricated by ion beam sputtering method. Three phases of Bi2201, Bi2212 and Bi2223 appear as stable ones in spite of the condition for thin film fabrication of Bi2212 and bi2223 compositions, depending on substrate temperature(T$\sub$sub/) and ozone pressure (PO$_3$). It is found out that these phases show similar T$\sub$sub/ and PO$_3$dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Phase Stability of Bi2212 and Bi2223 Thin Films Fabricated by ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.108-111
    • /
    • 2000
  • Bi2212 and Bi2223 thin films are fabricated by ion beam sputtering method. Three phases of Bi2201, Bi2212 and Bi2223 appear as stable ones in spite of the condition for thin film fabrication of Bi2212 and bi2223 compositions, depending on substrate temperature(T$\sub$sub/) and ozone pressure (PO$_3$). It is found out that these phases show similar T$\sub$sub/ and PO$_3$ dependence, and that the stable regions of these phases are limited within very narrow temperature.

  • PDF

Nucleation and Growth of Bi-free and Superconducting Phases in Bi2Sr2Ca2.2CuO3Ox (Bi2Sr2Ca2.2CuO3Ox계에서 초전도상과 Bi-free상의 핵생성과 성장)

  • 오용택;신동찬;구재본;이인환;한상철;성태현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.343-350
    • /
    • 2003
  • Using Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ powders prepared by solid state reaction and spray drying method, the nucleation and growth behaviors of superconducting and second phases were investigated during isothermal heat treatment. When the spray drying power was used in contrast with solid state reaction powder, Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2223) phase could be formed at the relatively shot time and second phases were much bigger. Quantitative analysis showed that as the heat treatment time increased, more Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2212) changed to 2223 and the major second phase was changed from (Sr,Ca)$_{14}$Cu$_{24}$ $O_{x}$(14:24) to (Sr,Ca)$_2$Cu$_1$ $O_{x}$ (2:l). The superconducting phase formed at the relatively short time 14:24 phase. Following the Bi-free phase of 14:24 Phase, but long time was needed in places far from the 14:24 phase. Following the formation of the 2212 phase near the 14:24 phase, the 2223 phase nucleated preferentially at the interface between the 2212 and 14:24 phases. The preferential nuclcation of 2223 was explained by its structural similarity and low Interfacial energy with both the Bi-free and 2212 Phases.12 Phases.

Analysis of Thermodynamics in BiSrCaCuO Thin Films Fabricated by Using the i-beam sputtering method (i-beam 스퍼터링 법으로 제작한 BiSrCaCuO 박막의 열역학분석)

  • Kim, Tae-Gon;Park, yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • High duality BiSrCaCuO thin films fabricated by using the i-beam sputtering method at various substrate temperatures, $T_{sub}$ and oxidation gas pressures, $pO_3$. The correlation diagrams of the BiSrCaCuO phases with Tsub and $pO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 as well as Bi2212 phases come out as stable phases depending on $T_{sub}$ and $pO_3$. From these results, the thermodynamic evaluation of ${\Delta}H$ and${\Delta}S$, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase, was performed.